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ABSTRACT 

We are investigating methods to register live-time interventional magnetic resonance imaging (iMRI) slice images with a 
previously obtained, high resolution MRI image volume. The immediate application is for iMRI-guided treatments of 
prostate cancer. We created and evaluated a slice-to-volume mutual information registration algorithm for MR images with 
special features to improve robustness. Features included a multi-resolution approach and automatic restarting to avoid local 
minima.  We acquired 3D volume images from a 1.5 T MRI system and simulated iMRI images. To assess the quality of 
registration, we calculated 3D displacement on a voxel-by-voxel basis over a volume of interest between slice-to-volume 
registration and volume-to-volume registrations that were previously shown to be quite accurate.  More than 500 registration 
experiments were performed on MR images of volunteers. The slice-to-volume registration algorithm was very robust for 
transverse slice images covering the prostate. A 100% success rate was achieved with an acceptance criterion of < 1.0 mm 
displacement error over the prostate. Our automatic slice-to-volume mutual information registration algorithm is robust and 
probably sufficiently accurate to aid in the application of iMRI-guided thermal ablation of prostate cancer. 

Keywords: Image registration, mutual information, magnetic resonance imaging (MRI), interventional MRI, prostate 
cancer, minimally invasive treatment, thermal ablation.  

1.    INTRODUCTION 

We are investigating methods for registering slice images obtained on a low field iMRI system to high-resolution MR 
volumes obtained on a traditional 1.5 T scanner.  Immediate applications involve the treatment of prostate cancer as 
described below. To be useful for an interventional procedure, a registration method must be automatic, accurate, robust, and 
fast. Currently, we are investigating voxel-based methods because of their ease of use and reported accuracy for other 
applications.    

There are important reasons for this investigation. At our institution, we have extensive experience with minimally 
invasive treatment of abdominal cancer using iMRI-guided radiofrequency thermal abaltion.1,2,3 In the case of the prostate, 
the tumor is not reliably identified with MR. Hence, other functional imaging techniques are required, and potential methods 
include SPECT antibody imaging and MR spectroscopy. To incorporate the functional images with iMRI tumor targeting, 
one can first register the low-resolution functional images with a high-resolution MRI. Then by registering the high-
resolution MR volume with live-time iMRI acquisitions, we can map both the functional data and high-resolution anatomic 
information to live-time iMRI images for improved tumor targeting. Image guided biopsies are another important application 
of iMRI in those cases where the tumor is more readily seen in MR than in CT or ultrasound. 4,5,6  

Previously reported methods on slice to volume registration were mainly applied to the brain. 7,8,9 For the case of volume 
to volume registration, there are many reports of accurate voxel-based registration in the brain 10,11,12,13 and abdominal and 
pelvic organs.1,14  
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There are challenges to successful slice to volume registration for the prostate. They include:  
1) A single slice, or a few slices, provides much less information than an entire volume for voxel based matching.  
2) There is a low signal to noise ratio (SNR) in iMRI because of the emphasis on fast imaging typically with a low field 

scanner.  
3) The pelvic region has irregular boundaries and can deform, unlike the brain to which registration has been most often 

applied. The prostate might move relative to the pelvic bones due to changes in rectal and bladder filling 15,16 or 
movement of the patient for treatment.  

4) The normal prostate is a small organ that when healthy measures only about 3.8 cm in its widest dimension transversely 
across the base, 17 and the small prostate is located below a much larger bladder that can change shape and size.  

5) The non-homogenous receive coil response can change from one acquisition to next. 
 

 We are investigating the use of voxel-based registration for this important application. We created a mutual information 
algorithm modified to include some features to improve robustness. We performed registration experiments under conditions 
found with low field open MR imaging.  

 

2.    REGISTRATION ALGORITHM 

2.1. Similarity Measurement 

Two similarity measurements, mutual information (MI) and correlation coefficient (CC), are used in our algorithm. The 
MI-based registration method is robust and suitable for multi-modality registration, is highly accurate for brain 
registration,18 and is suitable for abdominal registration where there can be deformation.1,14 However, the MI method has the 
problem of interpolation artifacts, which are especially serious in the case of down sampling in a multi-resolution approach.19 
Fortunately, CC produces fewer locally optimum values than does MI.20  Our method combines both similarity measures to 
use the good attributes of each.  

MI quantifies interdependency of two variables, such as image gray intensities of image A and B. When A and B are 
exactly aligned, MI is maximal.18 We calculate MI using Equations 9 to 12 in the report by Maes et al.18 CC is a measure of 
the relation between the statistical distributions of the two images. The absolute of CC has the range of 0 to 1. The higher the 
absolute value of CC, the more dependence the two images have.21 We calculate CC using the equation 10 in the report by 
Rueckert et al.21  

The algorithm shown in Figure 1 included special features to improve robustness for registration of MR prostate images.  
In the pseudo-code, the iMRI slice image is the reference slice, the slice image extracted from the high-resolution MRI 
volume is the reformatted slice, and the final reformatted slice is the registered slice. We used a multi-resolution approach 
and performed registration from low to high resolution.  We used MI at the highest resolution because it gave a more robust 
solution, and we used CC at the lower resolutions because it gives few local optima and because it calculates faster than MI.  
We created a method to avoid local minima by restarting the registration with randomly perturbed parameters obtained from 
a uniform distribution about the very first initial guess. The algorithm restarts until the absolute CC between the reference 
and registered images is above a threshold or the maximum number of restarts is reached. Absolute CC is used for the restart 
test rather than MI because it has a well-defined range between 0 and 1 and because it provides an independent check of the 
MI result.   

We used rigid body transformation (three translations and three rotations) and trilinear interpolation as described 
previously.1 For optimization, we used the downhill simplex method of Nelder and Mead 22 and the Powell method,23 but we 
prefer the former method as described later. Optimization of similarity ends either when the maximum number of 
calculations is reached (typically 500) or the fractional change in similarity function is smaller than a tolerance (typically 
0.001). Our very first initial guess at the lowest resolution is all zeros for the 3 displacements and 3 angles. Based on our 
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experience, we set the CC thresholds at 0.60, 0.65 and 0.70, and the maximum numbers of restarts at 25, 15, and 5, from low 
to high resolution, respectively. 

In Figure 1, there are several differences between low and high resolutions.  At lower resolutions, we resample the 
volume and slice to 1/4 or 1/2 size along the linear dimension.  We optimize the CC between reference and reformatted slices 
to obtain optimal transformation parameters.  We record important results such as all CC optimized values, the number of 
restarts, and the transformation parameters following an optimization.  At the end of either of these resolutions, we select the 
transformation parameters that have the maximum CC value. We then scale the parameters and assign them to be initial 
values at the next higher resolution.  At the highest resolution, MI instead of CC is chosen to be the similarity measurement 
method, and we select the final transformation parameters with maximum MI instead of CC.   

There are several preprocessing details. The input MRI volumes are 256 x 256 x 128 voxels that have an almost isotropic 
size over a field of view covering the whole pelvis. Isotropic voxels are created using 3D linear interpolation or higher order 
interpolation methods.1   

 

3.    EXPERIMENTAL METHODS   

3.1. Data Acquisition 

All MRI volumes were acquired using a 1.5 T Siemens MRI system (Magnetom Symphony, Siemens Medical Systems 
in Erlangen, Germany). An 8-element phased array body coil was used to ensure coverage of the prostate with a uniform 
sensitivity.  Typically two anterior and two posterior elements were enabled for signal acquisition. We used a 3D PSIF 
sequence with 9.4/5.0/60 (TR/TE/flip) yields 160 x 256 x 128 voxels over a 219 x 350 x 192-mm rectangular FOV and 
1.37 x 1.37 x 1.5-mm voxels oriented to give the highest resolution for transverse slices. There is over-sampling at 31% in 

Set an initial reformatted_slice in high-resolution MR volume and CC_thresholds 
DO registration FROM lowest resolution TO highest resolution BEGIN 
  Resample volume and slice to ¼, ½ or full number of voxels along linear dimension 
  Initialize registration_results and number_restarts to zero for restarting registrations 
  REPEAT 
    Optimize similarity (CC* or MI**) between the reference slice and reformatted_slice 

1. Transform the initial reformatted_slice and interpolate to get a new reformatted_slice  
2. Calculate similarity between the reference slice and the new reformatted_slice 
3. Repeat 1 and 2 until meeting function tolerance or maximum iteration number 

    Calculate CC between the reference slice and the optimal reformatted_slice 
    Record CC, MI** values and transformation parameters to registration_results 
    Perturb the initial transformation parameters: 
      initial_transformation_parameters = initial_transformation_parameters + random • factor  
    Trace the number of restarts:  number_restarts = number_restarts + 1 
  UNTIL (CC > CC_threshold) OR (number_restarts > maximum_restarts) 
  Select the final transformation_parameters based on CC* or MI** among registration_results  
  Scale the parameters and assign to initial_transformation_parameters of next higher resolution         
END 
 
Figure 1.  Registration algorithm. Capital bold words are computer language.   The outer loop from DO to END 
gives the multi-resolution approach. The inter loop from REPEAT to UNTIL is for restarting registration. 
Registration_results and number_restarts are used to store temporary values in the program.  See text for details. 
* CC is used at lower resolutions, ¼ or ½ number of voxels.  
** MI is used only at high resolution, full number of voxels. 
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the slice direction to reduce aliasing artifacts. This sequence gave excellent image contrast for the prostate and its 
surroundings. 

3.2. Creation of Images for Testing 

To test the ability of the slice-to-volume (SV) registration, we obtained high-resolution MRI volumes and simulated 
iMRI images by adding noise and receive coil inhomogeneity. We compared SV registration to volume-to-volume (VV) 
registration results.  

We simulated iMRI slice images. We averaged 3 slices together to simulate an iMRI 4-mm thick slice. We used a 
homogenous phantom to measure the SNR of iMRI images on our 0.2 T open magnet system (Magnetom Open, Siemens 
Medical Systems in Erlangen, Germany). We used simulated iMRI images to test the dependence of registration on noise 
levels.   Figure 2 shows the simulated iMRI slice images.   

3.3. Registration Experiments  

We acquired high-resolution MR volumes from three volunteers.  Each has two pairs of volumes for registration. We 
extracted three slices from one volume and used these slices to simulate an iMRI image.  We tested multiple ways to acquire 
slices for SV registration. First, we used transverse, sagittal and coronal slices for registration, respectively.  The objective 
was to optimize the slice orientation for image guidance. Second, we extracted slices from different positions such as 
centered at the prostate, and above and below the prostate by 35 mm. This experiment was performed to investigate the range 
for reliable slice registration. Third, we tested the dependence of the registration on noise levels.   
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Figure 2. Simulated iMRI images. Images on the left, (a), (c) and (e), are the high-resolution MR images in transverse, 
coronal and sagittal planes, respectively.  Images on the right are corresponding simulated iMRI images with SNR = 8.  
The images are of volunteer V2.   
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3.4. Evaluation Methods  

To test the program, we transformed a reference volume using known parameters to obtain a digital phantom. We 
extracted slices from the digital phantom and registered them to the reference volume. Because the transformation was 
known, we could validate the performance of the software.  

Our standard evaluation method was to compare SV and VV registration. The VV registration accuracy was previously 
evaluated to be on the order of one voxel (1.37 mm) 14. We defined a volume of interest (VOI) just covering the prostate and 
applied the transformations obtained by VV and SV registrations to voxels within the VOI.  We calculated the 3D 
displacement on a voxel-by-voxel basis over the two transformed VOIs. The mean voxel displacement was used as our 
metric of SV registration error.   

 
 

4.    RESULTS AND DISCUSSIONS 
More than 300 SV registration experiments were performed under a variety of conditions expected for applications in 

iMRI-guided treatment of the prostate. First, we report the effect of slice orientation and position on registration. Second, we 
describe the results associated with image noise.  At the end, we describe some details on the algorithm implementation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  SV registration using slices at different orientations. The error metric is voxel displacement between the SV and 
VV results. Plotted are mean errors as well as maximums and minimums that show the spread of the data. S1, S2, and S3 
refer to volunteers. Each volunteer has two volume pairs. For each pair, five transverse slices centered at the prostate were 
extracted from one volume and registered to the other. The same procedures were applied to coronal and sagittal slices. 
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4.1. Slice Orientation and Position  

Figure 3 shows registration results for single slices oriented in different directions. All slices intersect the prostate. 
Transverse slices give the lowest average error across the three volunteers, 0.39 ± 0.19 mm. The reason for this result is that a 
transverse slice contains more anatomical structures than do slices in other orientations. A transverse slice also excludes the 
bladder and portions of the rectum that can deform and create inconsistent matches for registration. The following analyses 
are all based on transverse slices. 

Figure 4 shows registration results for transverse slices at different heights relative to the prostate. Slices centered on the 
prostate produced the best results with the displacement error always being less than 1.0 mm.  On the one hand, slices 
centered at the prostate are good because they include an abundance of bony structures that provide adequate information for 
registration. Slices above the prostate include the bladder, which can deform and stress the registration algorithm. Slices 
below the prostate mainly contain fatty regions from the hips that can also deform and have less information for registration.      

4.2. Noise Level and Robustness 

We performed preliminary experiments using different noise levels in the simulated iMRI images. When SNR values 
were 30, 15 and 5, registration errors were always less than 0.9 mm for three volunteers in all conditions.  For more than 200 
registration experiments, the algorithm was very robust and never failed even with these large noise values.  We believe the 
algorithm to be insensitive to noise.  

4.3. Program Implementation 

We implemented the registration program using IDL (Interactive Data Language, Research System Inc., Boulder, CO.). 
The time for an SV registration, typically 40 to 90 sec on a Pentium III, 800 MHz CPU, with 512 Mbytes of memory, could 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. SV registration using transverse slices at different positions. Relative to the prostate, five iMRI slices each were 
extracted near its center, ≈ 35 mm above its center, and ≈ 35 mm below its center. Other details are given in Figure 3. 
Slices at the prostate center work best.  
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be improved using optimized C code rather than IDL. The simplex optimization method worked faster than the Powell 
method in our implementation. This result is contrary to our previous experience.1 We think that this phenomenon occurred 
because the Powell method depends on the order that parameters are optimized. Because we do not require preprocessing to 
determine initial values, there are no clear choices for which parameters to optimize first. Each call to the Simplex 
optimization for restarts or optimization at a finer resolution resulted in 50 to 105 similarity evaluations before the tolerance 
value (0.001) was reached. 

The restarting and multi-resolution features are important. Using normal clinical transverse images covering the prostate, 
the algorithm always gave very nearly the same transformation parameters (less than 0.01 voxels and 0.01 degrees) using a 
wide variety of initial guesses.  The multi-resolution approach enabled the program to get close to the final value quickly 
because of the reduced number of calculations.  Althought serious motion artifacts may stress the registration, our experience 
is that these can be controlled with appropriate subject compliance and with the proper acquisition technique.  Organ motion 
and deformation from one acquisition to the next are other factors that can affect the performance of the algorithm, especially 
when subject is in a different position or there is rectal and bladder filling. 14   Again, our experience is that these errors can 
be controlled. 14 

 

5.    CONCLUSION 
The automatic slice-to-volume mutual information registration algorithm was quite robust for transverse slice images 

covering the prostate. There were no registration failures in over 200 experiments on MRI images without obvious artifacts. 
The registration error of < 1.0 mm should be sufficiently accurate to aid in the application of iMRI-guided minimal invasive 
thermal ablation of prostate cancer.  We are beginning to explore these applications in clinical procedures and animal 
experiments. 
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