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ABSTRACT 

We are investigating in vivo small animal imaging and analysis methods for the assessment of photodynamic therapy 
(PDT), an emerging therapeutic modality for cancer treatment. Multiple weighted MR images were acquired from 
tumor-bearing mice pre- and post-PDT and 24-hour after PDT. We developed an automatic image classification method 
to differentiate live, necrotic and intermediate tissues within the treated tumor on the MR images. We used a multiscale 
diffusion filter to process the MR images before classification. A multiscale fuzzy C-means (FCM) classification method 
was applied along the scales. The object function of the standard FCM was modified to allow multiscale classification 
processing where the result from a coarse scale is used to supervise the classification in the next scale. The multiscale 
fuzzy C-means (MFCM) method takes noise levels and partial volume effects into the classification processing. The 
method was validated by simulated MR images with various noise levels. For simulated data, the classification method 
achieved 96.0 ± 1.1% overlap ratio. For real mouse MR images, the classification results of the treated tumors were 
validated by histologic images. The overlap ratios were 85.6 ± 5.1%, 82.4 ± 7.8% and 80.5 ± 10.2% for the live, necrotic, 
and intermediate tissues, respectively. The MR imaging and the MFCM classification methods may provide a useful tool 
for the assessment of the tumor response to photodynamic therapy in vivo.

Keywords: Image classification, magnetic resonance imaging (MRI), Photodynamic Treatment (PDT), Multiscale, Fuzzy 
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1. INTRODUCTION
Photodynamic therapy (PDT) is a novel and promising modality in the treatment of cancer [1, 2]. The therapy uses a 
tumor-localized drug called a photosensitizer excited by irradiation with a laser light of a particular wavelength, which 
generates reactive singlet oxygen that efficiently kills cells and ablates tumors. Both the photosensitizer and the light are 
inert by themselves, therefore, systemic toxicities in PDT are minimized. PDT is minimally invasive as only the small 
laser fiber is mounted externally to deliver the light to tumors.  

Imaging techniques provide a powerful tool for assessment of PDT efficacy. We are investigating in vivo small 
animal imaging techniques to study the tumor response to PDT using Pc 4, a photosensitizer developed at our institution 
[3]. High-resolution magnetic resonance imaging (MRI) can show anatomical and morphological changes of lesions [4]. 
In this study, we used an MR imaging system to acquire multiple weighted MR images from tumor-bearing mice before, 
after and 24 hours after PDT. The tumor response to the treatment is defined by the degree of tumor necrosis or 
apoptosis. To quantitatively evaluate PDT, we developed an automatic image classification method to differentiate live, 
necrotic and intermediate tissues within the treated tumor on the MR images. 

MR images are affected by multiple factors such as noise, intensity inhomogeneity and partial volume effects. 
Partial volume effects occur where pixels contain a mixture of multiple tissue types, which make the assignment of a 
single class to these boundary regions more difficult. Gaussian mixture model based classification estimate the mixture 
of each pixel by modeling the image histogram [5, 6]. These methods assume the intensity of single tissue type is a 
Gaussian distribution. Considering partial volume effects and image smoothing from post processing, the intensity 
distribution may deviate from a Gaussian model. Fuzzy c-means algorithm (FCM) [7, 8] employs fuzzy partitioning to 
allow one voxel to belong to tissue types with different membership grades between 0 and 1. Different modified FCM 
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has been proposed to compensate for intensity inhomogeneity and spatial information [8]. However, FCM is sensitive to 
the initial guess and noise with regard to both speed and stability [8-11].  In this report, we apply an anisotropic diffusion 
filter to smooth noise while preserving edge boundaries, therefore the result of a k-means classification on the coarsest 
level is sufficient enough for the initial guess of FCM method. A multiscale fuzzy C-means (FCM) classification method 
was applied along the scales of the anisotropic diffusion filter. The method gets accurate classification step by step and 
fast convergence at fine scales. The object function of the standard FCM was modified to allow multiscale classification 
where the result from a coarse scale is used to supervise the classification in the next scale. In the next section, we 
describe the modified fuzzy c-means classification. Results on synthetic data and actual MRI are reported in the 
following sections.  

2. METHOD
2.1 Multiscale Space from Anisotropic Diffusion Filtering 

 Multiscale space represents images by using a series of images at varying spatial resolution in which an image contains 
less local information as the scale increases. Anisotropic diffusion filter, introduced by Perona and Malik[12], is a partial 
differential diffusion equation model, the image achieves more smooth while preserving inter-region edges as discrete 
time step increasing.  Our multiscale description of images is generated by anisotropic diffusion filter with the time step 
as scale.

The anisotropic diffusion equation is described as  

,
( ( ( , ) ) ( , ))

I x t
div g I x t I x t

t
(1)

I(x,t) is the intensity of MR volumes at time step or scale t;  and div are spatial gradient and divergence operator.     
g(x, t) is the diffusion coefficient and chosen as a function of the magnitude of the gradient of intensity images  

2( ( , ) / )( , ) I x t kg I x t e (2)

The constant k is chosen to be the gradient magnitudes produced by noise, and can be fixed manually or estimated 
using noise estimator described by Canny[13]. By applying an anisotropic diffusion filter to the original MR images, we 
generated series of images and form the scale spaces. The scale level of original images is 0.  When the scale increases, 
the images become blurred and contain more general information. Fig.1 illustrates the scale space constructed from 
anisotropic diffusion filtering. 
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Fig.1. Illustration of scale-space constructed by anisotropic diffusion filtering. Scale space is composed by the stack of the 
original image filtered at different time step, t=0 is the original image, and the bigger the scale level, the less local 
information appears. The brain image is from BrainWeb project and with 5% noise and 20% field inhomogeneities. 
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2.2 Multiscale Fuzzy C-means (MFCM) 

The classification was performed from the coarsest scale to the original images. The classification result at a coarser 
level t+1 was used to initialize the classification at a higher scale level t. The finial classification is the result at the scale 
level 0. During the classification processing at the level t+1, the pixels with the highest membership above a threshold 
are identified and assigned to the corresponding class. These pixels are labeled as training data for the next level t.

The objective function of the FCM at level t is  

2 2 '

1 1 1 1 1 1
|| || ( || || ) ( ) || ||

r i

c N c N c N
p p

ik i k ik r k ik ik i k
k i k i x N k iR

J u x v u x v u u x v
N

2p (3)

Where uik  stands for the membership of the pixel i belonging to the class k, and vk is the vector of the class k center, xi is 
the feature vectors from multi-weighted MR images, Ni stands for the 8 neighboring pixels of xi for 2D images, and  the 
parameter p is a weighting exponent and is selected as 2.  The objective function is the sum of three terms, where  and 
are scaling factors to maintain balance between them. The first term is the standard fuzzy c-means object function that 
assigns a high membership to the voxel whose intensity is close to the center of the class. If only this term is used, we 
call this standard FCM method. The second term allows the membership in neighborhood pixels to regulate the 
classification toward piecewise-homogeneous labeling. If both the first and second terms are used, it was called the 
modified FCM method. The third term is to incorporate the supervision information from the classification of the 
previous scale, '

iku  is the membership obtained from the classification in the previous scale. If all three terms are used, 

we call this multiscale FCM (MFCM) method. is determined as: '
iku

1 1
' , if max( )

0,   otherwise

t t
ik ikk

ik

u u
u (4)

Where is the threshold to determine the pixels with known class in the next scale classification, and is set as 0.85 in our 
implementation. The classification is implemented by minimizing the object function J. The minimization of J happens 
when first derivative of J with respect to uik  and vk are zero. 

From 
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The class center is updated as: 
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u for every pixel, according to Lagrangian approach define
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for optimization with respect to uik  which requires 
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The membership of every pixel i belong to class k is updated according to below equation 
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2.3 MFCM Algorithm 

MFCM is an iterative algorithm that requires initial estimation of the class prototypes. Generally proper selection of the 
initial classification will improve clustering accuracy and reduces the number of iterations.  The k-means method is used 
on the coarsest image to estimate the initial class prototypes because noise and inhomogeneities have been effectively 
attenuated by anisotropic filtering at the coarsest image.   

The proposed MFCM algorithm for classifying MR images can be summarized in the following steps: 

1. Anisotropic diffusion filtering the images to the scale level t = n

2. Obtain the initial class prototypes using k-means clustering method in the coarsest level image. Set { '
iku } = 0 

3. Run clustering in the filtered image at level t =n-1

a. Update the membership  using (9)

b. Every class centroids {Vk} are computed using (6) 

c. Repeat a, b until the convergence which is defined as 

new oldv v (10)

The iteration is terminated when Euclidean distance of class centers between iterations is less than a small 
number  (  = 0.01). 

4. Threshold membership functions according to (4) and get matrix { '
iku }.

5. Repeat step 3-4 on the next scale image until completing the classification at original image (t=0)

2.4 PDT Experiments and Image Acquisition 

RIF(Radiation-induced fibrosarcoma)-1 tumor cells were grown as monolayers in E-MEM supplemented with 15% fetal 
bovine serum. Two RIF-1 tumors were initiated in C3H/HeN mice by injection of RIF-1 cells subcutaneously on the 
back. Tumors were treated and imaged when they reach 6-10 mm in diameter. The photosensitizer Pc 4 was injected to 
tumor-bearing mice via tail vein by 0.6 mg/kg of body weight. After 48 hours, one of the tumors was exposed to red 
laser light (672 nm) from a diode laser with a dose of 150 J/cm2 and a fluence rate of 100 mW/cm2. For monitoring the 
whole process of the PDT treatment, MR images of the mice were acquired before, immediately after and 24 hours after 
the therapy.  During each imaging session, the mice were mounted on a plastic holder and were provided with a 
continuous supply of 2% isoflurane in oxygen to minimize motion artifacts in MR images. 

T1-,T2- and FLASH weighted MR images were acquired for 3 tumor-bearing mice. The mouse MR images were 
acquired using a Siemens Sonata 1.5 T scanner (Siemens Medical Systems, Erlangen, Germany). A custom-designed 
whole-body mouse coil (2-element phased-array, ID = 32 mm) was used to minimize noise levels. The acquired coronal 
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scan has 256X120 matrix, 80X36 mm FOV and 1mm slice thickness. The number of signal averages was typically set at 
six to obtain images with low noise.  

3. RESULTS
To evaluate the classification method, we simulated a 3D tumor model that consists of four classes. Every class is given 
a gray level between 0 and 255 and added with 10% Gaussian noises. The images were filtered by 3 pixel gaussian filter 
for partial volume effects. The visual assessment of classification by the algorithm is illustrated in Figure 2.  In Table 1, 
a more detailed tissue-dependent quantitative analysis is performed by computing the sensitivity and specificity that is 
evaluated by the ground truth. For the simulated images, the algorithm can correctly classify 96.0 ± 1.1% tissues 
indicating the method’s excellent performance.   

Slice:6

Slice:52

b c da

Slice:21

Fig.2. Visual assessment of classification results for a 3D simulated image volume. Three image slices (Slice 6, 21, and 52) 
are shown to cover the whole tumor volume. (a) and (b) are simulated MR image volumes with different weightings. (c) 
is the classification result, (d) is the ground truth. In (c) and (d), four gray levels show different classes, bright is the 
class 4.  
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Table.1. Confusion table on simulated data. Values are the percentages computed over all voxels of each class (C1-C4) in 
the reference. False positive (FP) and false negative (FN) rates are computed in percentages using the reference. 

We also applied our method to the digital brain phantom data generated by the BrainWeb MR simulator[14]. We 
applied the classification method to T1 and T2 weighted MR images with different noise levels and 20% intensity non-
uniformity. Prior to the classification, the extracranial tissue such as skull, meninges and blood vessels have been 
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removed, so the brain MRI consists of 3 types of tissue: gray matter, white matter and CSF. The classification is 
evaluated by the overlap ratio between the classification result and the realistic model for every class, which is defined 
as twice the number of corrected classified pixels divided by the total number of pixels in the ground truth and classified 
results for each class. Figure 3 illustrates the classification results and corresponding ground of truth. Figure 4 
demonstrates the overlap ratio for each class between classified results and ground of truth, which decrease by less than 
6.0% with added noises. We compared our MFCM method with the standard FCM method and the modified FCM 
method. This was implemented by setting the constant =  =0 for the standard FCM method,  = 0.85 and =0 for the 
modified FCM method, and =0.85 and  =0.80 for our multiscale FCM method, respectively. Figure 5 shows the 
overlap ratio change with respect to different methods applied on T1 and T2 MRI with 9% noise and 20% intensity non-
uniformity.  

a b

c d

a b

c d

Fig.3. a) is a slice from a T2 weighted volume with 9% noise level from the digital phantom data. b) is the image at the scale 
6 after anisotropic diffusion filtering. c) is the classification result using our method. d) is the ground truth. 
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Fig.4. Classification evaluation of the digital phantom data. Overlap ratios of classification results with the ground truth are
plotted for each class at different noise levels.
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Fig.5. Comparison of classification of the standard FCM, modified FCM and our MFCM method on BrainWeb MRI data 
where 9% noise and 20% inhomogeneity T1 and T2 volume are used for classification. 

For real MR images from treated mice, the tumors were first manually segmented on each slice and then classified 
into three classes (live, necrotic, and intermediate tissues). The classification results were evaluated by histology images 
which have been labeled into 3 classes by a pathologist. Figure 6 illustrates the T1, T2, FLASH weighted MR images 
and the classification results of a real mouse tumor MR images 24-hour after PDT. Fig 6.d is the classification result 
showing 3 classes which are corresponding to the regions labeled in the histology (Fig6.e). We run the classification 
method on the MR images of 3 mice. The overlap ratios were 85.6 ± 5.1%, 82.4 ± 7.8%, and 80.5 ± 10.2% for the live, 
necrotic, and intermediate tissues, respectively. 

b ca

e fd

Fig.6. Classification results of real mouse tumor MR images 24-hour after PDT. (a), (b), and (c) are the original T1, T2, 
FLASH tumor MR images, respectively. d) is the classification result with showing 3 classes. e) is the corresponding 
histology, the necrotic (right arrow) and intermediate (left arrow) regions are labeled on the images. f) shows the 
overlap of the histologic labeling and the classified result. 
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4. DISCUSSIONS AND CONCLUSIONS 
We developed a multiscale fuzzy c-means classification method for a new application in photodynamic therapy. We use 
an anisotropic filter to effectively attenuate the noise within regions but preserve edges between different tissue types. A 
scale space is generated by anisotropic filtering, and the general structure information is kept in the images at a coarser 
scale. Therefore, a k-means method on the coarsest images is used for the initial guess. The classification is advanced 
along the scale space to include local information in fine-level images and to compensate the partial volume effects due 
to smoothing. The result from a coarser scale provides the initial parameter for the classification in the next scale. 
Meanwhile, the pixels with a high probability of belonging to one class in the coarse scale will belong to the same class 
in the next level. Therefore, these pixels in the coarser images are considered as points with a known class and are used 
as training data to constrain the classification in the next scale. In this way, we get accurate classification step by step 
and avoid being trapped into local minima. Furthermore, we include a term that constrains a pixel that can be influenced 
by its immediate neighborhoods so as to achieve a piecewise-homogeneous solution. The method is accurate and robust 
for both simulated and real MR images. 

Field inhomogeneity is smooth compared to MR images and we classify segmented tumors with a small volume on 
the whole MR images, therefore, field inhomogeneity is neglected in our classification. However, heavy field 
inhomogeneity can not be attenuated by anisotropic filtering and will corrupt the result severely. Similar to [15] , we can 
incorporate a gain field term into the objective function of FCM methods. By this way, the tissue classification and the 
bias field can be estimated simultaneously. 

Small animal imaging provides a new technique to study the therapeutic effects of cancer treatment. The proposed 
imaging and classification method could provide a useful tool to differentiate necrosis from viable tumor cells on MR 
images. It could be used for early assessment of therapeutic effects in the future. 
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