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ABSTRACT 

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection 
of lung boundaries on digital radiographs.  With the conventional ASM method, the position and shape parameters of the 
model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We 
propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the 
normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape 
prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is 
employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic 
segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and 
manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate 
that our ASM-MP method can accurately segment the lung on digital radiographs.  
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INTRODUCTION 

X-ray imaging is an important means to explore the pathological changes of the chest, including the lung, trachea, 
bronchia, pleura, vessel, mediastinum, diaphragm, esophagus, soft tissue, and etc. The quality of radiographs varies 
considerably due to doses, orientation, distance, alignment, and pathology. The images are characterized with contrast 
variation and non-uniform intensity background [1], which introduces difficulty for accurate segmentation and 
quantitative analysis in routine clinical practice. 

  The deformable contour model such as active contours or snakes (Kass et al.,1988) [1] and other deformable models 
are capable of capturing the complexity and the variability of the shape of anatomical objects in medical images. These 
models can be sensitive to initial positions, especially for noise images. It can be difficult to deal with topological 
adaption because of no constraint on the overall shape [2][3][4]. 

    Active shape models (ASM) combine the deformable shape descriptors with statistical model analysis. Object shapes 
are represented by a mean shape from the boundary points using principal component analysis (PCA). Thus, the 
deformations are modeled using a linear combination of the eigenvectors of the variations from the mean shape. It 
iteratively refines the pose and shape parameters of the point distribution model and updates the target points using a 
fitting criterion, i.e. the least Mahalanobis distance. However, the displacement is determined by a search only along the 
normal direction toward the strongest image edge. Moreover, the target points are determined by each contour point 
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independently and it leads to a wrong boundary if an appropriate target point is selected during the searching procedure 
[5]-[6]. 

  In order to overcome these limitations, we extend the searching direction to a fan-shape region and construct a cost 
function, which is minimized by a minimal path method using dynamic programming. A statistical prior shape is 
incorporated into the minimal path deformable model. Bayesian maximal a posteriori (MAP) is introduced into the 
contour detection processing. Smoothness constraints are imposed to keep the continuousness of the shape. A smooth 
item is incorporated into the covariance matrix of training points with regard to the correlation of neighboring points. 

SEGMENTATION METHODS 

Active shape models 

An object is described by n points, referred as landmark points. The landmark points are determined manually in a set of 
s training images. For example, we can represent n landmark points, {(xi,yi)} as the 2n element vector x, where  

                                                                    1 1( , ,..., , )T
n nx y x y=X                                                             (1) 

Principal component analysis (PCA) is applied to the shape vector x by computing the mean shape 
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The eigenvectors iΦ  of S is corresponding to the eigenvalue iλ  (sorted so that 1i iλ λ +≥ ). For any training set x, we 
can approximate x using 

                                                                         ≈ +x x Φb                                                                           (4)
 where 1 2( | | ... | )tφ φ φ=Φ and b is a vector of t elements containing the model parameters giving by 

                                                                          ( )T= −b Φ x x                                                                        (5)           

  When fitting the model to a set of points, the values of  b are constrained to lie within the range ik λ± ,where k 
usually has a value between 2 and  3.  

  The number t of eigenvalues is chosen so as to have a certain proportion vf  of the variance in the training shapes, 
which is usually between 90% and 98%. The desired number of nodes is given by the lest number of eigenvalues so the 
following criteria is met: 
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  Before computing the mean shape, the training shapes are aligned by translating, rotating and scaling. We minimize the 
weighted sum of squared distances between corresponding points on different shapes. An iterative scheme known as 
Procrustes analysis is used to align the shapes. Therefore, this alignment procedure makes the shape model independent 
of the size, position, and orientation of the objects.  

   However, model points are not always placed at the strongest edge in the locality – they may represent a weaker, 
secondary edge or other image structures. The key step is how to build statistical models of the image structure and then 
find the points which best match the model. 
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  A statistical model of the grey-level structure is built along the normal direction of the boundaries in the training set. 
The intensity derivative along the normal direction is calculated in order to get a set of normalized samples { ig }.   The 
quality of fitting a new sample sg  to the model is given by 

                              
1( ) ( ) ( ) (7)T

s s g sf S −= − −g g g g g  

  Where g and gS are the mean and covariance of ig . Equation 7 is the Mahalanobis distance of the sample from the 
model mean. It is linearly related to the log of the probability of which gs is drawn from a mean shape distribution. 
Minimizing ( )sf g  is equivalent to maximizing the probability that 

ig originates from a multidimensional Gaussian 
distribution.  
 
  However, the displacement of ASM is only determined by a search only along the normal direction toward the 
strongest image edge. Moreover, the target points are determined by each contour point independently and it leads to a 
wrong boundary if an appropriate target point is selected during the searching procedure. From our experiments on 
digital radiographs, we found that sometimes the searching outliers drive the contour far away from the true boundary 
position, especially for images with special lesions, irregular changes of lung shape. We try to construct a cost function 
involve all of the target points and minimize the cost path using dynamic programming so as to find the boundary in 
global instead of finding each point in local of ASM. 
 

Minimal path deformable model 

  The traditional energy function of snake is proposed by Kass et al [1], includes two important forces. The internal 
energy controls the smoothness of the contour. The potential energy attracts the contour toward the object boundary. The 
energy function is described below:  

                     

22 ' ''( ) ( ) ( ) ( ( ) (8)E c d d dα ν ν β ν ν λ ν ν= + − ∇∫ ∫ ∫Ω Ω Ω
C C I C  

 

  where α, β and λ denote real positive weighting constants, Ω denotes the current curve, [0,1]ν ∈  is the parameterization 
interval for the contour, ∇I  represents the gradient of the image, C is the segmented contour.  The energy function can be 
solved by 

                                          
2 'min ( ( ( )) ) ( ) (9)f g dν ν ν∇ •Ω I C C  

  where the Euclidean length of the contour C is given by '( ) ( )L f d f dsν ν= =Ω ΩC C , [0,1]s∈  is also the curve parameter. 

Therefore, the problem of image segmentation is transformed into a search for the global minimal path. 
 
 
Maximal a posteriori(MAP) shape model 

  In order to incorporate the mean shape to the contour searching, a corrected contour can be describe by the maximum a 
posteriori estimation 

                                                     
( | , ( )) (10)argmaxMAP p

Ψ

Ψ = Ψ C G I  

Where Ψ denotes the weighted graph that contains the estimated curve of the object, G(I) is the weighted graph of the 
image I, we can compute it using Bayes’ Rule[6][11][12] 
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Where ( | )p ΨC denotes the probability of existence of the curve C, given the estimated shapeΨ . ( ( ) | , )p ΨG I C  represents 
the weighted graph G(I), given the curve C and an shape estimation Ψ . The estimated shape, ( )p Ψ can be calculated by 
Gaussian model 
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Where Σ  is shape variance being composed of corresponding singular values of SVD.  

The MAP shape estimation can be calculated by 
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  The first term represents the degree of current curve matching the estimated distance map, the second term represents 
the degree of the estimated distance map matching the former distance map, and the last term represents the probability 
of the estimated shape Ψ. 

  The MAP shape model is incorporate into the minimal path searching process, we have 

                               
( ) ( ) (14)model image intE E E E dα β γ ν

Ω

= + +∫C
 

Where Emodel, Eimage , and Eint denote the prior shape attraction force, the image feature attraction, and the internal force 
respectively. α, β and γ are real positive weighting constants which balance the forces. Eimage is given by 
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Where the first term denotes the degree of the curve C in the distance map, which is the Euclidean length of the curve C; 
the second item denotes the gradient of the original image, which is used to regulate the searching when the distance 
map is not enough for guiding the curve in case of noises and lack of a real edge. λ and (1-λ) denote the weights of the 
distance and gradient information respectively. 

Where Eint  can be denoted by 
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The discrete version is a smooth constraint term denoted by  

                                                              int 1 12 (17)i i iE − += − +P P P  

Where P is the position of mark point. 
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Figure 1. Block diagram of the proposed segmentation algorithm. 

 

Search neighboring region 

  Since there are overlaps and high contrast noises in digital radiographs, model points are not always placed on the 
strongest edge in the locality – they may represent a weaker secondary edge or some other image structures [5]. Thus the 
displacements determined by points along the normal direction may lead to a misadjusted boundary if an appropriate 
target point is selected in the searching processing. We extend the searching in a fan-shape region instead of along the 
normal direction toward the strongest image edge. The new minimal path cost function is used to find the optimal 
displacements for landmarks.   Figure 1 shows the block diagram of the proposed segmentation algorithm. 
 

Smooth covariance matrix for the mean shape 

  While the mean shape is calculated from the training set, a smooth constraint is incorporated into the covariance matrix 
since the identity covariance matrix is too under-constrained if neighboring points are correlated. Like the smooth item 
in [7], a smooth matrix is applied to generate smoother shapes than those using an identity covariance matrix. The vector 
of the smooth matrix Csmoth, for k=1, 2, 2n, are given by   
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The factor 0.5 is adopted to keep the neighboring points to move together and generate smoother shapes than those using 
the identity covariance matrix. 

       
                                                             (a)                                                 (b)  

                                              
                                                             (c)                                                 (d)  

        
                                     (e)                                                       (f)                                       

               
                                                                                 (g)                                                    (h)                                  
 

Figure 2. Segmentation results on chest DR images.  
The first and second columns show the results by ASM and ASM-MP, respectively. 
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EXPERIMENTAL RESULTS 

Segmentation experiments are carried on 72 patient chest X-ray images to demonstrate the performance of the proposed 
method. These images were identified by clinical experts and classified into 10 categories, including normal, pneumonia, 
phthisis, bronchitis, bronchiectasis, pneumothorax, lung cancer, pleural effusion, etc. 

Figure 2 shows the results by the conventional ASM and our ASM-MP. The ASM gives unsatisfactory results due to 
segmentation errors. The ASM approach usually fails to correct the outliers initialized by the image model, especially 
the contours of left lung in Fig.2(a), (c), (e) and (g). Fig.2(b), (d), (f) and (h) show that ASM-MP catch the correct 
outliers after convergence. Although the ASM method has smoother boundaries than the ASM-MP, the ASM-MP can 
extract the lung more accurately. This can be attributed to the fact that the outliers of smooth initialized shapes are 
inevitably propagated to the pose and shape by ASM during iteration, the ASM-MP can adjust the outliers and fit the 
real contours with local features such as gradient and deviation in MP model.  

 To evaluate our approach, the mean distance error is calculated as a metric to measure the difference between 
automatic and manual segmentation results as the ground truth. Figure 3 shows the mean distance errors and standard 
deviation by the ASM and ASM-MP methods. Most of mean distance errors and standard deviation by the ASM-MP are 
less than that of the ASM, there are still several results with worse measurement such as No 2, 5, 25, 28 in group A and 
No.10, 16, 21, 31 and 32 in group B. In order to verify if the proposed method has significant improvement for lung 
segmentation, we performed a paired t-Test for the quantitative measurement. The mean of mean distance errors and 
standard deviation are 1.75 ± 0.33 and 1.99 ± 0.45 pixels for ASM and ASM-MP, respectively. The p of less 0.001 in a 
paired t-Test demonstrates that the results from the ASM-MP are significantly different from those of the ASM method.   
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Figure 3. Comparison of the mean distance errors and the standard deviation by ASM and ASM-MP for 72 images (e.g., group A, 36 
images in (a) and group B, 36 images in (b)). The ASM-MP method has small distance errors for most images compared to the ASM 
method. A p value of less than 0.001 demonstrates that the two groups are significantly different.  
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CONCLUSIONS 

  We developed an automatic searching method for ASM-based segmentation for chest digital radiographic images. In 
order to minimize the sensitivity of the original ASM approach, we incorporate a smooth constraint to the mean shape 
and a penalizing outlier strategy, which minimize the cost path using a deformable model. A MAP prior shape estimator 
is also applied to the deformable model so as to incorporate of the prior shape model to the contours searching 
procedure. The automatic method can accurately segment the lung on digital radiographs and it outperforms the 
conventional ASM approach.  
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