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ABSTRACT   

The current definitive diagnosis of prostate cancer is transrectal ultrasound (TRUS) guided biopsy.  However, the current 

procedure is limited by using 2D biopsy tools to target 3D biopsy locations. This paper presents a new method for 

automatic segmentation of the prostate in three-dimensional transrectal ultrasound images, by extracting texture features 

and by statistically matching geometrical shape of the prostate. A set of Wavelet-based support vector machines (W-

SVMs) are located and trained at different regions of the prostate surface. The WSVMs capture texture priors of 

ultrasound images for classification of the prostate and non-prostate tissues in different zones around the prostate 

boundary. In the segmentation procedure, these W-SVMs are trained in three sagittal, coronal, and transverse planes. 

The pre-trained W-SVMs are employed to tentatively label each voxel around the surface of the model as a prostate or 

non-prostate voxel by the texture matching. The labeled voxels in three planes after post-processing is overlaid on a 

prostate probability model. The probability prostate model is created using 10 segmented prostate data. Consequently, 

each voxel has four labels: sagittal, coronal, and transverse planes and one probability label. By defining a weight 

function for each labeling in each region, each voxel is labeled as a prostate or non-prostate voxel. Experimental results 

by using real patient data show the good performance of the proposed model in segmenting the prostate from ultrasound 

images.   
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1. INTRODUCTION  

Segmentation of different organs and tissues in ultrasound images is one of the most challenging tasks in medical image 

processing. Ultrasound image segmentation has been studied by many researchers to automatically detect or track the 

anatomical structures during image-guided medical procedures. Prostate segmentation is one of the most important and 

practical applications of ultrasound image segmentation. Segmentation of three-dimensional (3-D) transrectal ultrasound 

(TRUS) images may be utilized in prostate cancer biopsy and image-guided surgical planning and therapy [1]. 

Comparing to magnetic resonance imaging (MRI) or computed tomography (CT), US is inexpensive and easy to use and 

is able to follow deformation in real time. A reliable and accurate method to detect the prostate boundaries would be 

useful during many procedures on the prostate such as inserting a needle for biopsy [2], planning for brachytherapy [3], 

and the volume measurement of the prostate gland. So far, automatic prostate segmentation has remained as a 

problematic issue in TRUS. It is often required manual segmentation of the prostate. However, this segmentation is time 

consuming. Many methods for semi-automatic or automatic segmentation of the prostate in TRUS images have been 

proposed. Knoll et al. proposed a deformable segmentation model that uses one-dimensional wavelet transform as a 

multi-scale contour parameterization tool to constrain the shape of the prostate model [4]. Pathak et al. developed a 

model for an edge-guided definition that provides the detected prostate edges as a visual guidance for the user to 

manually edit the boundaries [5]. Richard et al. used a texture-based method that employs a clustering process to label 

the prostate region based on four-texture energy [6]. Ghanei et al. designed a 3-D discrete model to outline the prostate 

boundaries [7]. A user is required to outline the prostate in several two-dimensional (2-D) cross-sections of the volume 

image in order to provide an initialization model. Zhan and Shen proposed a 3-D shape model for automatically 

segmenting 3-D prostate boundary from 3-D TRUS images using shape statistics and Gabor features [1].  
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Hu et al. presented a semi-automatic approach that used a model-based initialization and mesh refinement that initialized 

by only six manually selected points on the prostate boundary [8]. Active shape models (ASM) was proposed to segment 

the prostate [9] as well as other organs [10]. Level set framework was also applied to segment the prostate [11] and other 

tissue [12]. Atlas registration and statistical texture prior was utilized to automatically segment the TRUS [13]. In this 

paper, we propose a 3-D model for automatically segmenting 3-D prostate in 3-D TRUS images using Wavelet features 

and prostate geometry. 

2. METHODS  

The proposed method consists of the training and application stages. Two training TRUS images were used for wavelet 

features training and ten patients are used to make a predefined model. The prostate boundaries have been manually 

defined by specialists. A prostate shape model is created based on the allowable models of shape variations and its 

probability. This model is employed to modify the prostate boundaries. The prostate textures are locally captured by 

training the locally placed Wavelet-based support vector machines (W-SVMs). With integrating local texture features 

and geometrical data, W-SVMs can robustly differentiate the prostate tissue from the adjacent tissues. The trained W-

SVMs are employed to tentatively label the respective voxels around the surface into prostate and non-prostate tissues 

based on their texture features from different Wavelet filters. Subsequently, after an affine transformation of the  shape 

model to the pre-defined prostate region that optimally matches with the texture features of the prostate boundary, the 

surface of the model is driven to the boundary between the tentatively labeled prostate and non-prostate tissues based on 

defined weighting functions and labeled voxels.    

 

Figure 1. Wavelet filters that were employed for feature extraction: (a) Original image, (b) Biorthogonal 1.3 first 

approximation, (c) Biorthogonal 1.3 vertical details, (d) Biorthogonal 1.5 horizontal details, (e) Biorthogonal 1.5 

vertical details, (f) Biorthogonal 4.4 first approximation. 
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2.1 W-SVMs 

US image textures can provide important features for accurately defining the prostate, especially for the regions where 

prostate boundaries are not clear. Biorthogonal wavelets 1.3, 1.5, and 4.4 are employed to extract the texture features of 

the prostate. Designing biorthogonal wavelets allows more degrees of freedom comparing to orthogonal wavelets. One 

additional degree of freedom is the possibility to construct symmetric wavelet functions. A number of W-SVMs on 

different regions of the surface model are placed and trained to adaptively label the tissue based on its texture and 

location. Each W-SVM is composed of 5 wavelet filter banks, voxel coordinates, and a Kernel Support Vector Machine 

(KSVM). Figure 1 shows wavelet filters that were employed for feature extraction.   

The wavelet filters are employed to extract texture features from TRUS images, and the KSVM is used to nonlinearly 

classify the Wavelet texture features for tissue differentiation. Each W-SVM corresponds to an individual sub-region in 

order to characterize and differentiate image textures locally and adaptively. All W-SVMs are trained to differentiate the 

texture features around its corresponding sub-regions in the training set. The trained W-SVMs are employed to 

tentatively label each voxel into prostate and non-prostate tissues in the application stage. To find more accurate 

segmentation, the set of W-SVMs is trained and applied in 3 planes (sagittal, coronal, transverse). Three sets of 2-D 

Wavelet filters were located at three orthogonal planes and were trained in each plane. Therefore, each voxel was 

tentatively labeled in three planes as prostate or non-prostate voxel. Figure 2 shows the algorithm flowchart of the 

segmentation method. 

 

Figure 2. The algorithm flowchart. 

 

2.2 Probability model  

A prostate probability model was used for modifying the segmentation. Previously, we proposed several methods for 

prostate registration [14-16]. In this study, we registered ten segmented prostates using an affine transformation. The 

registration approach that employed for creating the model is based on the principal axis transformation. This method 

was chosen because of its computational properties, speed and simplicity. The prostate volume was translated and 

rotated with respect to each other. The principal axis transformation is known from the classical theory of rigid bodies. A 

rigid body is uniquely located by knowledge of the position of its center of mass and its orientation (rotation) with 

respect to its center of mass. The center of mass, inertia matrix, and principal axes can be determined for any rigid body. 

For simple geometric shapes, the principal axes coincide with the axes of symmetry. In general, an orthogonal 

coordinate system is set up with their origin at the center of mass. When computed in the principal axis coordinate 

system, the inertia matrix is diagonal [17]. The basic parameters that were used for registration of the prostate are the 

position of the center of mass and rotation of the prostate about the center of mass, and the lengths of the principle axes. 

These properties uniquely determine the location and geometry of the prostate in three-dimensional space. After 
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overlaying these 10 registered volumes, a probability model was created for each voxel based on how many prostate 

models are labeled as a voxel of the prostate at that region. Figure 3 shows a few 2-D segmentation results in different 

planes.   

 

 

Figure 3.  2-D segmentation results in different planes: red lines are the gold standard boundaries and green lines 

are the segmentation boundaries. (a) Coronal plane (b) Sagittal plane (c) Transverse plane. 

 

2.3 Evaluation Criteria  

We validate the segmentation using Dice similarity ratio and sensitivity [18-19]. Quantitative performance assessment of 

the method was performed by comparing the results with the gold standard data. The Dice similarity was used to 

numerically assess the prostate classification algorithm. The Dice similarity was computed as follows:  
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where S represents the voxel set of the prostate segmentation  results obtained by the algorithm and G represents the 

voxel set of the corresponding gold standard data. 

 

Figure 4. Different views of a 3-D result of the prostate segmentation (shown in blue) and its comparison with the 

corresponding gold standard (shown in gold, transparent). 

 

Sensitivity, Sen(S,G), represents the proportion of the segmented prostate volume, S, that is correctly overlapped with the 

gold standard volume, G. 

Sen(S,G)=TP/G×100% ,                                                                      (2)  
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where TP is the true positive volume and represents the overlapped volume of the segmented prostate and the gold 

standard. When a voxel was not detected as a prostate voxel, the detection was considered false negative if the voxel was 

indeed a voxel of the prostate on the gold standard that was established by manual segmentation. When a voxel was 

detected as a prostate voxel, the detection was a false positive if the voxel was not a prostate voxel on the gold standard.  

3. RESULTS  

The method was evaluated by five patient data sets of 3-D TRUS. Fig. 3 shows sample segmentation and its comparison 

with the corresponding gold standard. Quantitative performance assessment of the method was done by comparing the 

results with the corresponding gold standard data from manual segmentation. The Dice similarity and Sensitivity were 

used as performance assessment metrics in prostate classification algorithm. The numerical results of these evaluation 

criteria are shown in Table 1. The dice ratio is between 88.7%-95.0% among five prostate volumes. The mean and 

standard deviation of the dice function are 90.7% and 2.5% respectively.  

 

Table 1.  Quantitative evaluation results.   

 Patient 1 Patient  2 patient  3 patient  4 Patient  5 Mean 
Standard 

Deviation 

DICE 90.2% 88.7% 88.9% 95.0% 90.8% 90.7% 2.5% 

Sensitivity 91.2% 95.2% 82.3% 93.6% 91.1% 90.7% 4.9% 

 

4. DISCUSSION AND CONCLUSION 

A set of Wavelet-based support vector machines (W-SVMs) and a shape model are developed and evaluated for 

automatic segmentation of the prostate TRUS images. Wavelet transform was employed for prostate texture extraction. 

A probability prostate model was incorporated into the approach to improve the robustness of the segmentation. This 

paper has presented a new method for segmenting the prostate from 3-D TRUS images, using both the prostate shape 

and texture features. A set of W-SVMs are located at different regions of the surface to classify prostate and non-prostate 

tissues in different zones around the prostate boundary. Compared to 2-D prostate segmentation methods, the proposed 

method can segment the prostate in three dimensions. This method employs a learning based mechanism, using W-

SVMs, to automatically collect texture features in different regions of prostate boundary. The probability model was 

incorporated into the segmented model to locally and adaptively identify prostate and non-prostate tissues. In this way, 

even if the prostate has diverse appearance in different parts and weak boundary near bladder or rectum, the model is 

still able to produce a relatively accurate segmentation in 3-D TRUS images. 
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