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ABSTRACT   

The proposed macroscopic optical histopathology includes a broad-band light source which is selected to illuminate the 
tissue glass slide of suspicious pathology, and a hyperspectral camera that captures all wavelength bands from 450 to 
950 nm. The system has been trained to classify each histologic slide based on predetermined pathology with light 
having a wavelength within a predetermined range of wavelengths. This technology is able to capture both the spatial 
and spectral data of tissue. Highly metastatic human head and neck cancer cells were transplanted to nude mice. After 2-
3 weeks, the mice were euthanized and the lymph nodes and lung tissues were sent to pathology. The metastatic cancer 
is studied in lymph nodes and lungs. The pathological slides were imaged using the hyperspectral camera. The results of 
the proposed method were compared to the pathologic report. Using hyperspectral images, a library of spectral 
signatures for different tissues was created. The high-dimensional data were classified using a support vector machine 
(SVM). The spectra are extracted in cancerous and non-cancerous tissues in lymph nodes and lung tissues. The spectral 
dimension is used as the input of SVM. Twelve glasses are employed for training and evaluation. The leave-one-out 
cross-validation method is used in the study. After training, the proposed SVM method can detect the metastatic cancer 
in lung histologic slides with the specificity of 97.7% and the sensitivity of 92.6%, and in lymph node slides with the 
specificity of 98.3% and the sensitivity of 96.2%. This method may be able to help pathologists to evaluate many 
histologic slides in a short time.   
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1. INTRODUCTION  
The current gold standard for diagnosis of cancer is biopsy, which involves the removal of tissue samples for 
examination. Laboratory results for the determination of histopathology of a suspected tumor may generally take several 
days [1]. Hyperspectral image data provide a powerful tool for non-invasive tissue analyses. This technology is capable 
of capturing both the spatial and spectral information of an organ in one snapshot. In fact, a hyperspectral imaging 
system produces several narrow band images at different wavelengths. Compared to conventional color cameras and 
other filter-based imaging systems, this system produces full neighboring spectral data with spectral and spatial 
information [2].  

Metastatic tumor or a metastasis is one of the most important concerns in cancer. Hyperspectral imaging (HSI) can 
extend the human vision to near-infrared and infrared wavelength regions. HSI has already been applied in the medical 
field [1, 3-14]. HSI is applied to provide quantitative data about the tissue oxygen saturation in patients with peripheral 
vascular disease, to detect ischemic regions of the intestine during surgery, to predict and follow healing in foot ulcers of 
diabetic patients, and to diagnose hemorrhagic shock [15]. The hyperspectral imaging that operates as a tunable optical 
band pass filter has been utilized to discriminate between non-cancerous and cancerous tissue [16]. Recently, Fourier 
transform infrared (FTIR) spectroscopy has widely been used as a cancer diagnostic technique that can only be applied 
to point measurements [17-22]. The hyperspectral imaging was evaluated for cytologic diagnosis of cancer cells. HSI 
was employed to obtain hyperspectrum from a normal human fibroblast, as well as its telomerase-immortalized and 
SV40-transformed derivatives. Novel algorithms were developed to differentiate among these cell models based on 
spectral and spatial differences [23]. The high-resolution hyperspectral imaging microscopy was evaluated to detect 
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abnormalities in skin tissue using Hematoxylin and Eosin stained preparations of normal and abnormal skin, benign nevi 
and melanomas [6]. The capability of this method was demonstrated by observing gastric tumors in 10 human subjects. 
The spectral signatures of the gastric cancer and non-cancerous stomach tissue were created in infrared wavelengths. The 
hyperspectral images were processed via the standard deviation of the spectral diagram, support vector machine, and 
first derivatives and integral of in spectral diagram were proposed to enhance and detect the cancerous regions [24]. So 
far, none of the research has used hyperspectral imaging for cancer detection in pathological slides. The goal of this 
study is to test the potential of using hyperspectral imaging and advance image analysis methods for cancer detection. 

 
Figure 1.  A schematic view of hyperspectral images (left).  Right: The spectral graphs of two pixels from the 
histologic slide of lymph node tissue. The graph depicts the intensities for each pixel in that wavelength. 

 
Figure 2. The mean of spectral signatures of the original cancerous tissues and the metastatic tumor in mice. The 
horizontal axis shows different wavelengths in nanometers. The vertical axis shows the intensities. The original tumor 
pixels are shown with the red line; the metastatic tumor in the lymph nodes are shown in the blue line with red 
squares; and the metastatic tumor in the lungs are shown in the blue line.  

2. METHODS  
The hyperspectral images were captured of three normal and three pathologic slides for each organ, i.e. lung and lymph 
node, using a hyperspectral camera. Each pixel in a hyperspectral image has different intensities at different 
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wavelengths. These intensities make the spectral diagram or the spectral signature for each pixel. Figure 1 shows a 
schematic view of the hyperspectral image. 

We made a spectra library by capturing spectral diagrams of the original cancerous tissue and the metastatic tumor 
in the lungs and lymph nodes. Figure 2 shows the intensity spectra of the head and neck tumor and its metastasis to the 
lungs and the lymph nodes. The defined regions were utilized to train the support vector machine (SVM) to classify the 
normal and malignant regions. Using the trained SVM, each tissue slide was analyzed and classified. The SVM was 
trained and evaluated with the leave-one-out cross-validation method [25, 26].  Figure 3 shows the flowchart of the 
method.  

 
Figure 3. The flowchart of the method. 

The head and neck tumor was transplanted into 19 nude mice. The cell line that was used in this study was 686LN-
M4e. This cell line is a highly metastatic, human head and neck cancer cell line. After 2-3 weeks, the mice were 
euthanized and the lymph nodes and lung tissues were sent to the pathology facility at our institution. The metastatic 
cancer is studied in lymph nodes and lungs. The pathological slides were imaged using the hyperspectral camera. To 
capture the hyperspectral image data, a CRi imaging system system (Caliper, Hopkinton, MA) was used.  

A successful approach to HSI data classification is based on the use of multilayer perceptrons (MLP) and radial basis 
function neural networks (RBFNNs). However, these approaches are not effective when dealing with a high number of 
spectral bands, since they are highly sensitive to the Hughes phenomenon. In the recent years, support vector machines 
(SVMs) have been successfully used for HSI data classification. The SVMs can efficiently handle large input spaces or 
noisy samples, and produce sparse solutions [27]. Therefore, to classify the compressed data and to segment the 
hyperspectral image, support vector machine (SVM) is chosen for this study. 

2.1 CRi Maestro systems 

CRi Maestro systems can acquire full hyperspectral data with down to 25 micron/pixel resolution in only a few seconds. 
Inside the Maestro system is a liquid crystal tunable filter that utilizes a solid-state liquid-crystal design that blocks 
unwanted wavelengths and transmits the required wavelength. It changes wavelengths in milliseconds without noise or 
vibration. The CRi's spectral imaging system generates x-number of images, where x is user-defined. Each image set 
contains the measurement of the spectrum of all the points which comprise it. The wavelength range of interest was 
defined between 450-950 nm with 5 nm increments. The series or spectral cube contains spectra from 450 to 950 nm, 
with each image containing 1.4 million data points. The excitation light was set on the white illumination plus the 
infrared internal illumination and no emission filter was used. Each pixel in the hyperspectral image has a sequence of 
reflectance at different spectral wavelengths that can display the spectral signature of that pixel.  

2.2 Least Squares SVMs 

In Support Vector Machines (SVMs), a convex quadratic programming (QP) solves the classification problem. Suykens 
and Vandewalle proposed a new version of SVM classifiers, which was named Least Squares SVMs (LS-SVMs) [28]. In 
LS-SVMs instead of inequality constraints, a two-norm with equality are applied. Therefore, instead of a QP problem in 
dual space, a linear set of equations are obtained. The SVM tries to find a large margin for classification. However, the 
LS-SVM that is used in this paper looks for a ridge regression for classification with binary targets. This method 
overcomes some disadvantages of SVM. For example the selection of hyperparameters is not as problematic. The size of 
the matrix involved in the QP problem is also directly proportional to the number of training points [29]. Suykens and 
Vandewalle modified the Vapnik’s optimization function of the SVM as follows [28]: 

HSI of the 
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where w  is the weighting vector, b is the bias term, e  is for misclassifications, and γ  is the tuning parameter. This 
constrained optimization problem can be solved by determining the saddle points in the Lagrange functional as, 
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where Ri ∈α are Lagrange multipliers that can be positive or negative in the LS-SVM formulation. 
In SVMs, it is possible to choose several types of kernel functions including linear, polynomial, radial basis function 

(RBF), multilayer perceptron (MLP) with one hidden layer and splines. The RBF kernel is used in this paper as follows: 
2 2( , ) exp{ }i iK x x x x σ= − −                                                          (4) 

where σ is constant. 
Spectral data of each pixel in the hyperspectral image was employed as the input of the SVM, and the output is 

either cancerous or non-cancerous pixel. In each slide, the regions that are definitely normal or malignant were selected 
and used for SVM training and evaluation. These regions were defined based on pathological reports. The leave-one-out 
cross-validation method is utilized in this study. Here we have input vectors of 101 elements in 5 nm spectral resolution 
images.  

 
Figure 4. The mean spectral signatures of the cancerous and normal tissue in mice. The horizontal axis shows 
different wavelengths in nanometers, and the vertical axis shows the intensity. Tumor pixels are shown in the red- 
squared line, and the normal tissue pixels are shown in the blue line. Left panel shows the lymph node; and the right 
panel shows the lung tissue. 

2.3 Evaluation Criteria  

The method was evaluated based on pixel detection. Sensitivity and specificity were used as statistical measures of 
the performance of the binary classification method [30-33]. Sensitivity measures the proportion of actual positives 
which are correctly identified as positive, i.e. the percentage of tumor pixels which are correctly identified as tumor 
tissue. The sensitivity expresses as follows:  

FNTP
TPySensitivit
+

= ,                                                                    (5) 
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where TP and FN are true positive and false negative, respectively. When a pixel was not detected as a tumor pixel, the 
detection was considered as a false negative if the pixel was indeed a tumor pixel in the manually created map. When a 
pixel was detected as a tumor tissue, the detection was a false positive if the pixel was not tumor tissue.  

Specificity measures the proportion of negatives which are correctly identified, i.e., the percentage of healthy tissue 
correctly identified as not having cancer. The following equation shows the specificity calculation: 

 
FPTN

TNySpecificit
+

= ,                                                                    (6) 

where TN and FP are true negative and false positive, respectively.   

The FNR was defined as the number of false negative pixels divided by the total number of the tumor pixel. When a 
pixel was detected as tumor tissue, the detection was false positive if the pixel was not a tumor. The FPR was defined as 
the number of false positive pixels divided by the total number of normal tissue. In each pathological slide, the region 
that is definitely malignant or normal tissue was chosen. The evaluation criteria were calculated based on these regions. 

 
Figure 5. Cancer detection results in pathological slides for lung tissue (top) and lymph node tissue (bottom). From 
left to right, digital images by a microscope; RGB images that are made by using three bands of the hyperspectral 
image; the binary results, and the overlaid images where the green regions show the tumor. 

3. RESULTS  
The method was evaluated by data sets of three slides of normal lung tissue, three slides of cancerous lung tissue, three 
slides of normal lymph node tissue, and three slides of cancerous lymph node tissue. Fig. 5 shows cancer detection 
results in the lung and at the lymph node in the pathological slides. The detection performance was evaluated with 
respect to the pathological report. The numerical results of the sensitivity and specificity are shown in Table 1.  

Table 1.  Quantitative evaluation results of the pixel-by-pixel classification. 

 Specificity (%) Sensitivity (%) FPR (%) FNR (%) 
Lymph nodes 98.3 96.2 1.7 3.8 
Lungs 97.7 92.6 2.3 7.4 
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4. DISCUSSION AND CONCLUSION 
Hyperspectral imaging and advance image analysis methods are proposed to aid the detection of cancer in pathologic 
slides. Hyperspectral image can help pathologist to detect the cancer without consuming long time for each slide and can 
be used not only for diagnosis but also for determining the tumor metastasis after biopsy. This technology expands the 
vision from the three RGB spectral bands to more than a hundred spectral bands. The large number of data in 
hyperspectral images can be processed to broaden the spectral range and can supply useful information for medical 
doctors. The proposed method detects a cancerous tissue pixel by pixel. The detection of one pixel as a cancerous pixel 
does not depend on adjacent pixels. Therefore, the cancer size or shape would not cause a problem. This method could 
detect the cancerous tissue in the lung and the lymph node with high specificity and sensitivity. Hyperspectral imaging 
can be used as a supporting tool for pathologist to evaluate a large number of slides in a short time. Histopathology is the 
current gold standard for diagnosis of cancer. However, even this method has problems such as invasiveness, great 
dependence on the judgment of pathologists, and needs time for results preparing. Moreover, the biopsy specimens can 
only be captured from a few points. A simple, noninvasive, and reliable technique that enables rapid detection of cancer 
would aid many physicians. 
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