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Purpose: To develop and test an automated algorithm to classify the different tissues present in
dedicated breast CT images.
Methods: The original CT images are first corrected to overcome cupping artifacts, and then a mul-
tiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin
and glandular tissues have similar CT values on breast CT images, morphologic processing is used
to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) clas-
sification method is then used to classify breast tissue as fat and glandular tissue. By combining the
results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tis-
sue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare
the results of the automated classification to those obtained by manual segmentation on eight patient
images.
Results: The correction method was able to correct the cupping artifacts and improve the quality
of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic
classification and manual segmentation were 91.6% ± 2.0%.
Conclusions: A cupping artifact correction method and an automatic classification method were
applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can
provide quantitative measurements regarding breast composition, density, and tissue distribution. ©
2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4754654]
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I. INTRODUCTION

Dedicated breast CT (BCT) is a new x-ray based tomographic
imaging method for breast cancer detection and diagnosis.1, 2

Compared to other breast imaging methods, e.g., mammog-
raphy or ultrasound, BCT provides high-quality volumetric
data that can be important in identifying disease, assessing
cancer risk, and monitoring changes in breast glandular tissue
distribution over time. Compared with whole-body CT, BCT
involves not only changing the acquisition geometry in order
to limit the primary x-ray beam to the breast but also opti-
mizing the acquisition parameters in order to meet the special
requirements of breast imaging. For example, to increase con-
trast, the x-ray spectra used in BCT (49–80 kVp) have lower
energy than those used in whole-body CT (80–140 kVp).1 To
the best of our knowledge, three types of BCT systems that
can image patients have been developed; one system was de-
signed by Boone et al.,3 one other prototype system devel-
oped by a commercial company (Koning Corporation, West

Henrietta, NY), as previously described,4, 5 and a third system
developed by Tornai et al.6, 7

Breast tissue classification can provide quantitative mea-
surements regarding breast composition, density, and tissue
distribution change with age. It could also aid in breast can-
cer detection and identification of women at high-risk. In
addition, quantitative tissue classification is valuable as in-
put to finite-element analysis algorithms to simulate breast
compression for comparison to mammography.8, 9 Classi-
fied breast data can also be of use in dose estimation and
computer-aided diagnosis. Although various approaches have
been investigated to classify breast tissue13–16 and to identify
microcalcifications and tumors,17–20 accurate breast tissue
classification remains a challenge. Several groups have in-
vestigated histogram-based classification methods in order
to separate breast tissue into three types of tissues, i.e.,
skin, fat, and glandular tissue. Nelson et al. used a two-
compartment Gaussian fitting of the histogram followed by
a region-growing algorithm for breast tissue classification.10
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FIG. 1. Flowchart of the classification algorithm.

Chen et al. proposed an automatic volumetric segmentation
scheme by partitioning a histogram into intervals followed by
interval thresholding.11 Applied to volumetric breast analysis,
this technique decomposes a breast volume into five subvol-
umes corresponding to five intensity subintervals, i.e., lower
(air), low (fat), middle (normal tissue or parenchyma), high
(glandular duct), and higher (calcification), in the order of the
x-ray attenuation value. Packard et al. described a histogram
based two-means clustering algorithm in conjunction with a
seven-point median filter in order to reduce quantum noise.12

In this study, we investigated a fuzzy C-means classi-
fication approach using a cupping artifact correction and
a multiscale bilateral filter. To correct inhomogeneity, we
adapted a bias correction method previously developed for
MR images.21 To reduce image noise, we used multiscale bi-
lateral filters. The robustness of the proposed algorithms was
demonstrated in phantoms and in patient data.

II. MATERIALS AND METHODS

Our image processing and classification method consists
of four major steps: (1) a cupping artifact correction method
is proposed to reduce the cupping artifacts on breast CT im-
ages; (2) a multiscale bilateral filter is developed to remove
noise but retain edge information; (3) a modified fuzzy C-
means classification method is applied to classify the breast
into different types of tissues; and (4) a morphologic method
is used to obtain the skin of the breast. Figure 1 shows a flow
chart summarizing the proposed method. Details on the meth-
ods used for these steps are provided here. Image acquisition
and validation methods are also described in this section.

II.A. Cupping artifact correction
for breast CT images

There are two major reasons for the presence of cupping
artifacts in dedicated breast CT images. Chief among them
is the inclusion of scattered x rays in the CT projections. As
in the projections the scatter-to-primary ratio is highest to-
ward the center of the breast, the voxel values in the center
of the reconstructed breast tend to be lower, thus resulting in
cupping.22 Furthermore, hardening of the x-ray beam by the
imaged breast also contributes to the cupping artifacts.23

The cupping artifacts, i.e., intensity bias, can cause seri-
ous misclassifications when intensity-based segmentation al-
gorithms are used to classify tissue on images.24 Essentially,
the misclassification is due to an overlap of the intensity
range of different tissues introduced by the cupping artifacts,

making the voxels in different tissues not separable based
solely on their intensities.25 Two types of cupping artifact cor-
rection methods, i.e., prospective and retrospective methods,
can tackle this problem. Prospective methods aim to avoid
intensity inhomogeneity during the image acquisition pro-
cess. These methods are capable of correcting intensity in-
homogeneity induced by the imaging device. Retrospective
image processing methods do not require special acquisition
protocols and can be applied to remove both machine and
patient-induced inhomogeneity.21 Early retrospective meth-
ods include those based on filtering,26–28 on histogram,29 and
on segmentation,30, 31 For breast CT, a background nonunifor-
mity correction method was introduced to model the cupping
artifacts and to thus correct the artifact.32

Our cupping artifact correction method was inspired by a
MR bias correction method.21 The correction method can be
briefly described as follows. Let X be an image with L pixels
and N1 grey levels, and let M be the associated image corre-
sponding to the magnitude of the local gradient with N2 grey
levels. The entropy associated to the normalized intensity-
gradient joint histogram is therefore21

H (X) = −
N1∑
i=1

N2∑
j=1

∑L
l=1 δ (Xl − i) δ (Ml − j )∑N1

i=1

∑N2
j=1

∑L
l=1 δ (Xl − i) δ (Ml − j )

× log

( ∑L
l=1 δ (Xl − i) δ (Ml − j )∑N1

i=1

∑N2
j=1

∑L
l=1 δ (Xl − i) δ (Ml − j )

)
,

(1)

where δ is the delta function. The correction method initially
models the cupping artifacts with a small number of basis
functions and then increases their number as the quality of
the image increases until no noticeable differences are found
between the two levels of resolution.

The amplitude ω of these basis functions defines the
cupping artifacts. They are calculated by minimizing the
intensity-gradient joint entropy of the log-transformed, cor-
rected image using an optimization method. The corrected
image mean value was restricted to remain the same as the
original so as to preserve the original contrast of the image:21

E(ω) = arg min
ω

H {log[X/B(ω)]}. (2)

The cupping artifacts were modeled as a linear combina-
tion of equidistant low frequency cubic B-spline basis func-
tions B(ω).35 In practice, this is achieved by interpolating a
matrix of coefficients to the image dimensions.

In our breast CT data, the cupping artifacts are positive
and slow varying, and additive noise is the main noise.33 The
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cupping artifacts are similar to the MR bias field that was de-
scribed as a multiplicative, positive, slow varying field in the
presence of additive noise. In order to evaluate if this bias
correction method is suitable for CT images, three phantoms
were used to mimic fat, glandular tissue, and their combina-
tion, as described in Sec. III.A. Because such an assumption
for cupping artifact correction has the drawback that addi-
tive random noise is modulated, we designed a bilateral filter
to process the corrected breast CT data. This method auto-
matically corrects the cupping artifacts using a nonparamet-
ric coarse-to-fine approach which allows the cupping artifacts
to be modeled with different frequency ranges and without
user supervision.34 An entropy-related cost function based on
the combination of intensity and gradient image features was
defined for a more robust homogeneity measurement. Such
entropy was measured using not only image intensities but
also image local gradients as homogeneous images exhibit not
only well-ordered intensities but also well-clustered very low
gradient values in homogeneous regions.

The method starts with a coefficient matrix of size 3 × 3
× 3 with all of its values set to one (null cupping artifacts).
The strategy updates these values while the entropy of the
corrected image is decreased. The initial and minimum step
is used to modify each coefficient in this coefficient matrix.
Through optimizing each coefficient, the entropy of the cor-
rected image is minimized. When the entropy value becomes
stable, the number of coefficients of the matrix is increased
using B-spline interpolation and the process is repeated. In
our study, the number of basis function is increased along lev-
els, and it was set to 3, 5, 7, 9, and 11, respectively. N1 = 128
and N2 = 100. The number of iterations varies in our study.
It mainly depended on the size of the breast and the tolerance
of the energy function. The initial step was set to 0.01 and the
minimum step to 0.001. The algorithm ends when no signifi-
cant difference is found between the two levels of resolution.
Overall, each patient took 15–20 min to obtain the cupping
artifacts using MATLAB 2010a on a Dell T7500 (Dual cores
2.00GHz/8G RAM).

II.B. Multiscale filtering

Multiscale filter is the second preprocessing step for BCT
images before automatic breast tissue classification. Noise in
BCT images can induce classification regions to become dis-
connected. Bilateral filtering is a nonlinear filtering technique
introduced by Tomasi.36 This filter is a weighted average of
the local neighborhood samples, where the weights are com-
puted based on temporal (or spatial in case of images) and
radiometric distance between the center sample and the neigh-
boring samples.37 It smoothes images while preserving edges,
by means of a nonlinear combination of nearby image values.
Bilateral filtering can remove noise at intraregions while pre-
serving the inter-region edge.38

For input discrete image I the goal of the multiscale bilat-
eral decomposition is to first build a series of filtered images
I i that preserve the strongest edges in I while smoothing small
changes in intensity. We suppose that the original image is the

0th scale (i = 0), i.e., set I0 = I, and then iteratively apply the
bilateral filter to compute

I i+1
n = 1

λ

∑
k∈�

Wσs,i(k) · Wσr,i

(
I i
n+k − I i

n

) · I i
n+k

with λ =
∑
k∈�

Wσs,i(k) · Wσr,i

(
I i
n+k − I i

n

)
,

(3)

where n is a pixel coordinate, Wσ (x) = exp(−x2/σ 2), σ s,i and
σ r,i are the widths of the spatial and range Gaussians, respec-
tively, and k is an offset relative to n that runs across the
support of the spatial Gaussian. The repeated convolution by
Wσs,i increases the spatial smoothing at each scale i. Suppose
that at the finest scale, we set the spatial kernel σ s,i = 2i−1σ s

(i > 0). Here we set σ s to 2. The range Gaussian Wσr,i is an
edge-stopping function. If an edge is strong enough to sur-
vive after several iterations of the bilateral decomposition, it
will be kept and preserved. To ensure this property we set σ r,i

= σ r/2i−1. Reducing the width of the range Gaussian by a
factor of 2 at every scale reduces the chance that an edge that
barely survives one iteration will be smoothed away in later
iterations. In our filter processing, the intensity of breast CT
images was transferred to unsigned integer 8 bit (0-255), and
we set the initial width σ r to 12.

II.C. Breast tissue classification

We use a fuzzy C-means (FCM) classification method to
classify the breast into three types of tissue: skin, fat, and
glandular tissue. Classification of BCT images can be chal-
lenging because BCT images are affected by multiple factors
such as noise and intensity inhomogeneity. At the same time,
as skin and glandular tissues have similar CT values in BCT
images,10 thresholding-based methods are not sufficient to ob-
tain adequate classification. The FCM algorithm is an iterative
method that produces an optimal partition for an image by
minimizing the weighted intergroup sum of the squared error
objective function.39 This procedure converges to a local min-
imum or a saddle point of the FCM objective function. Each
voxel is assigned a high membership to a class whose center
is close to the intensity of the voxel, and a low membership is
given when the voxel intensity is far from the class centroid.39

In general, the final classification is reached by assigning each
voxel solely to the class with the highest membership value
for the voxel.40 On breast CT images, skin and glandular tis-
sues have similar CT values.10 We used FCM to classify the
corrected and noise filtered BCT images into two classes, one
being fat tissue and the other being glandular and skin tissue.

II.D. Morphologic operations for the skin

To separate glandular from skin tissue, we use position
information. It has been reported that the skin thickness in
breast is 1.45 ± 0.30 mm.41, 42 We can calculate the skin
voxels based on the voxel size of the breast CT images.
In our studies, as the breast CT voxel size is 0.27 × 0.27
× 0.27 mm3, we constrain the skin thickness within seven
voxels. We use a threshold to obtain the “outer” mask for the
whole breast. We used the percentage of the maximal inten-
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sity to determine the threshold. For example, we used 85% of
the intensity of the second peak in the intensity histogram (the
first peak is the background). A 9 × 9 × 9 box is then used
to perform erosion operations in order to obtain the “inner”
mask for the tissue inside the skin. The skin mask is obtained
by subtracting the inner mask from the outer mask. By com-
bining the skin mask and the two-class results from FCM, skin
can be obtained.

II.E. Breast CT image acquisition from phantoms and
human patients

To evaluate the proposed methods, we used a breast CT
prototype system (Koning Corporation, West Henrietta, NY)
to acquire both phantom and patient images. In this system,
a complete BCT scan entails the acquisition of 300 projec-
tions over a full 360◦ revolution of the x-ray tube and detec-
tor in 10 s. The Koning system has a fixed tube voltage of
49 kVp, which, as we described previously, results in an x-
ray spectrum with a first half value layer of 1.39 mm Al.43

The appropriate tube current for each imaged breast is auto-
matically selected by the system based on two scout projec-
tion images, with the maximum allowed tube current set at
100 mA, thus resulting in a mean glandular dose to an av-
erage breast of approximately 8.5 mGy.43 The detector pixel
size is 388 μm, thus resulting in acquired CT images with
a reconstructed voxel size of 0.27 × 0.27 × 0.27 mm3. The
FDK algorithm was used to reconstruct the images,44 and no
scatter correction method was applied.

In order to evaluate the cupping artifact correction method,
we designed three phantoms using plastic bottles. These bot-
tles were filled with water, a mixture of oil and water (ratio:
1:4), and oil, respectively. The oil was used to simulate fat,
while the water simulates glandular tissue. These surrogates
for breast tissue have been used previously for other investiga-
tions in breast imaging.43, 45, 46 The acquisition of these phan-
tom images was performed in the standard way as described
above.

This human study was approved by the Institutional Re-
view Board (IRB) of Emory University. For the testing of the
image processing methods with patient images, eight patient
breast cases were acquired. For the classification evaluation,
10 image slices were selected for the CT volume of each pa-
tient. A total of 80 image slices were used for the manual
segmentation and the classification evaluation.

II.F. Classification evaluation

In order to evaluate the automated classification method,
manual segmentation was performed by a radiologist who is
one of the authors (S.W.) and who has more than 10 yr of
experience in CT imaging. Analyze 10.0 (AnalyzeDirect Inc,
Overland Park, KS) was used for manual segmentation that
was conducted without knowledge of the computer segmen-
tation results. The manual segmentation consisted of seven
steps performed in Analyze 10.0: (1) Use a five-point 3D me-
dian filter to smooth the 3D images. (2) Select 10 2D images
from the 3D volume data for segmentation. (3) Set a threshold
for each of the 10 selected images to obtain the breast mask.

(4) Generate an inner skin mask by increasing the previous
threshold in order to obtain a clear visualization of the skin
and by manually selecting points along the inner boundary
of the skin. (5) Segment the skin by combining the previous
breast mask and the skin inner mask. (6) Segment the glan-
dular tissue using multiple operator-selected thresholds, each
applied to small areas of the image. Because of the presence
of the cupping artifacts, a threshold to separate adipose from
glandular voxels may only work for small regions. The final
segmented glandular tissue is a combination of these individ-
ual regions. (7) Segment fat by subtracting skin and glandular
tissue from the breast mask. This manual process often re-
quired more than 1 h per image.

The Dice overlap ratios were used as the performance as-
sessment metric for the breast classification algorithm. The
Dice overlap ratio was computed as follows:

Dice(S,G) = 2 |S ∩ G|
|S| + |G| × 100%, (4)

where S represents the voxels of one type of tissue automat-
ically classified by the algorithm and G represents the vox-
els of the corresponding gold standard obtained from manual
segmentation.

III. RESULTS

III.A. Cupping artifact correction

Figure 2 shows the images from the three phantoms
filled with water, mixture of water and oil, and oil, respec-
tively, showing the substantial cupping present precorrec-
tion. All three corrected images demonstrate a more uni-
form signal within the phantom. Figure 3 shows the intensity
comparison with and without cupping artifact correction of
the images in Fig. 2, where a narrowing of the histogram can

FIG. 2. Cupping artifact correction for phantom images. Left panel: Original
CT images from the phantom filled with oil (top), mixture of oil and water
at a ratio of 1:4 (middle), and water (bottom). Horizontal lines on the images
are used to show the profiles in Fig. 3. Center panel: Corrected CT images.
Right panel: Computed cupping artifacts.
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FIG. 3. Histograms and intensity profiles before and after cupping artifact correction. Left: Intensity histograms of original and corrected CT images for three
scans as shown in Fig. 2. Right: Intensity profiles before and after correction. Signals were extracted from the lines in the images as shown in Fig. 2.

be seen, indicating the improvement in signal uniformity. The
effectiveness of the correction can also be seen in the line pro-
files in Fig. 3, where the distinct cupping originally present is
removed.

Figure 4 shows the breast images of patient number 5 be-
fore and after cupping artifact correction. It is noted that the
cupping artifacts of a human breast are not linear and it can
be more complicated than that in a breast phantom. This is
because the phantom was filled with one material. However,
a human breast can include 3–4 types of tissue with different
attenuation coefficients, such as skin, fat, and glandular tis-
sue, and sometimes calcification. The cupping artifacts of a
human breast depend on the structure and distribution of each
type of tissue in the breast.

Figure 5 shows the comparison of histograms before and
after cupping artifact correction for four patients. The im-
provement in signal uniformity for the breast CT images is
indicated by the narrower peaks in the histograms of the cor-
rected images.

III.B. Multiscale filtering

Figure 6 shows qualitative visual and quantified com-
parison for two breast CT images from two patients (number 2

FIG. 4. Comparison of breast CT images before (left panel) and after (center
panel) cupping artifact correction (patient #5). Breast CT images are from
the same patient and are shown in three orthogonal directions. Right panel:
Corresponding cupping artifacts in each direction.
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FIG. 5. Comparison of histograms before and after cupping artifact correction for four patients [patient #3(a), #4 (b), #8 (c), and #7(d)].

and 3) after multiscale filtering. From the line profiles, it can
be seen that the bilateral filtering method can effectively sup-
press noise but keep important edge information of different
types of tissues.

III.C. Breast tissue classification

Figure 7 shows the classification results of one typical pa-
tient (number 6, volumetric glandular density 6.4%). Visual
assessment shows that the classification method is able to
classify the breast into glandular, fatty, and skin tissue.

Figure 8 shows the classification results from three patients
with different percentages of glandular tissue (numbers 2, 3,
and 4). The difference images show that the automatic classi-
fication is close to the results of manual segmentation, which
indicate a good performance of the automatic classification
method.

Figure 9 illustrates the Dice overlap ratios of the automated
and manual segmentation of glandular, fat, and skin tissues of
the eight patients. The overlap ratios were 97.9% ± 3.9%,
91.4% ± 1.3%, and 91.6% ± 2.0% for fat, skin, and glan-
dular tissues, respectively. The results from the eight patients
demonstrate that the cupping artifact correction and automatic
classification methods are able to accurately classify the glan-
dular, fatty, and skin tissue from high-resolution, breast CT
images.

In order to evaluate the effect of cupping artifact correction
processing on classification accuracy, we classified both the
original and corrected images. Figure 10 shows the visual as-
sessment of classification results between original, corrected,

and filtered CT images. At the regions inside the boxes, the
classified binary images of the corrected images show ac-
curate classification while the results of the original images
have artifacts. This shows that the preprocessing method is
required to achieve an adequate classification.

In order to evaluate robustness of our method, we added
Gaussian noise to the breast CT images and then performed
classification on images at different noise levels. The stan-
dard deviation of the Gaussian noise is 4% and 8% of the
maximum intensity of the CT image. When the noise level is
8%, the Dice overlap ratios of the fat, skin, and glandular tis-
sues for the 80 image slices of the eight patients are 97.4%
± 0.0%, 89.4% ± 0.1%, and 87.7% ± 0.5%, respectively.
These results demonstrate the robustness of the algorithm for
noisy images, which is important when low radiation dose is
used for breast CT imaging.

After classification, breast tissue composition analysis was
performed to estimate the percentage of glandular tissue
within the breast for each of the eight patients. These per-
centages, along with the breast imaging-reporting and data
system (BI-RADS) density classification of the clinical mam-
mograms of the eight patients, are listed in Table I. For the
eight subjects, the percentage of glandular tissue ranges from
8.5% to 31.6%. These glandular fraction values are consistent
with those recently reported by Yaffe et al.47

IV. DISCUSSION

An automatic breast CT classification approach based
on FCM and cupping artifact correction and multiscale
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FIG. 6. Multiscale bilateral filtering for breast CT images (patients #3 and #2). Images from left to right: Original breast CT images, filtered images after the
first scale, and filtered images after the third scale. Bottom: Signal profiles before and after filtering for the images on the top (left) and at the middle row (right).

bilateral filtering was investigated. The comparison of the
automated tissue classification results with those obtained
manually shows that our proposed method yields accurate
classification of the skin, fat, and glandular tissue. Accurate
classification provides quantitative measurements of breast
tissue composition, density, and distribution.

In the proposed breast tissue classification method, we
adapted a bias correction method to correct the cupping
artifacts and used multiscale bilateral filtering to reduce
image noise. Since the skin and glandular tissues have sim-

TABLE I. Volumetric density and BI-RADS density classification of the
mammograms of the eight patients.

Patient 1 2 3 4 5 6 7 8

Volume density 34.4 12.5 8.5 10.7 11.1 6.4 8.9 31.6
(%)
BI-RADS 3 2 2 2 3 2 2 3

ilar HU values on breast CT images, morphologic process-
ing was used to identify the skin based on its position infor-
mation. In a previously reported, histogram-based method,10

seed points need to be placed manually. Noise and cupping ar-
tifacts can affect the histogram and thereby can affect its clas-
sification accuracy. In another previously reported method,12

a 2D parabolic correction was applied to flatten the fatty tis-
sue on each slice. This method hence lacked 3D information
for the cupping artifact correction. In our method, we used
a 3D cupping artifact correction method in order to remove
the cupping artifacts and thus accurately classify the three
types of breast tissues. Although our cupping artifact correc-
tion and classification methods were applied to 3D volume
data, bilateral filtering was performed slice by slice due to the
computational time required by 3D bilateral filters. In future
work, we will investigate the use of a fast 3D bilateral filtering
algorithm.

A limitation of this study may be the relatively small size
of the patient-based testing. Given that obtaining the gold

Medical Physics, Vol. 39, No. 10, October 2012
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FIG. 7. Classification results of breast CT images from human patient #6.
The original breast CT images (left) were classified into three tissue types:
the skin (middle) and glandular and fatty tissue (right) where the glandular
tissue shows higher intensity than fatty tissue.

standard (manual segmentation) of breast CT is very time
consuming, we were only able to compare our automated
method to a total of 80 slices acquired from eight different pa-
tients. Ideally the manual segmentation would be performed
by several radiologists, on higher number of slices spanning
more patients. However, it should be noted that the varia-
tions in the Dice ratios were relatively narrow, both intrap-
atient and interpatient, showing a consistency in the accuracy
of the automated classification that may signify a small gain
in knowledge if additional cases were tested. In addition, all
breast CT images were acquired with the same system, so how
the algorithm behaves with variations in acquisition geometry
and/or parameters, e.g., voxel size, tube voltage, etc., was not
investigated.

FIG. 8. Classification results of breast CT images. From top to bottom: Orig-
inal breast CT images, manual segmentation, automatic classification, and
difference images between manual segmentation and automatic classifica-
tion. From left to right: three different patients with different percentages of
glandular tissue (patient #2, #3, and #4).

In addition to investigating the use of fast 3D bilateral fil-
tering, other future studies that will take advantage of the pro-
posed algorithm include characterizing the homogeneous tis-
sue mixture approximation in breast imaging dosimetry and
studying the relationship between volumetric and areal glan-
dular tissue density and BI-RADS density classification.

FIG. 9. Quantitative evaluation of the breast tissue classification for eight human patients. The Y axis is the overlap ratio between manual and automatic
classification for the skin, glandular, and fatty tissue in the breast. The bars show the mean and standard deviations of the results from ten slices for each patient.
The percentage of the glandular tissue is listed at the bottom for each patient.
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FIG. 10. Original BCT images (left panel) and the classification results
without correction (central panel) and with correction and filtering (right
panel). The boxed regions show that the corrected images demonstrate ac-
curate tissue classification while the uncorrected images were not able to
produce good classification due to noise and cupping artifacts.

V. CONCLUSION

We developed an automated classification approach for
high-resolution images from dedicated breast CT. By cor-
recting the cupping artifacts, reducing the image noise, and
performing the classification using FCM clustering and mor-
phological operations, this algorithm is able to classify breast
tissue into three primary constituents: skin, fat, and glandu-
lar tissue. The accuracy of the classification approach was
demonstrated through a pilot study of eight patients. The clas-
sification method can provide a quantification tool for breast
CT imaging applications.
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