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Abstract
Based on the Radon transform, a wavelet multiscale denoising method is proposed for MR
images. The approach explicitly accounts for the Rician nature of MR data. Based on noise
statistics we apply the Radon transform to the original MR images and use the Gaussian noise
model to process the MR sinogram image. A translation invariant wavelet transform is
employed to decompose the MR ‘sinogram’ into multiscales in order to effectively denoise the
images. Based on the nature of Rician noise we estimate noise variance in different scales. For
the final denoised sinogram we apply the inverse Radon transform in order to reconstruct the
original MR images. Phantom, simulation brain MR images, and human brain MR images
were used to validate our method. The experiment results show the superiority of the proposed
scheme over the traditional methods. Our method can reduce Rician noise while preserving
the key image details and features. The wavelet denoising method can have wide applications
in MRI as well as other imaging modalities.
Keywords: magnetic resonance imaging (MRI), multiscale denoising, Rician distribution,
Radon transform, wavelet transform, translation invariant

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is a practical limit on the signal-to-noise ratio (SNR)
when acquiring MR image data [1]; post-processing methods
to remove noise are important. Normally, denoising methods
use the signal averaging principle which is based on the natural
spatial pattern redundancy in the images. Gaussian filters have
been widely used in many applications such as functional MR
imaging (fMRI) [2]. However, they have the disadvantage
of blurred edges due to averaging nonsimilar patterns. In
order to avoid this problem, many edge-preserving filters have
been proposed. One example is an anisotropic diffusion filter
(ADF) [3–6]. Such a filter preserves edges by averaging pixels
in the orthogonal direction of the local gradient. However, the
denoising methods usually erase small features and change
image statistics due to their edge enhancement effect.

Another approach for denoising relies on statistical
inference of a multiscale representation of images. A
prominent example includes methods based on wavelet
transforms [7–9]. For denoising MR images, wavelet

techniques based on soft thresholding were first applied
by Healy [10]. In another approach, a wavelet-based
Wiener-filter-like denoising method was used [11] where the
magnitude of the MR image was squared and the square of a
Rician random variable was modeled by a scaled noncentral
chi-square distribution. The prior knowledge of the correlation
of wavelet coefficients was used to represent significant
features across scales [12]. A wavelet denoising method was
compared with Gaussian smoothing methods [13]. A Wiener-
like-filtering method was applied in the wavelet domain before
the reconstruction of MR images [14]. However, typical
wavelet-based methods can produce significant artifacts in the
processed images because of the structure of the underlying
wavelets.

Other denoising methods include a maximum posteriori
estimation technique. Those methods account for Rician noise
through a data likelihood term and a spatial smoothing prior
[15]. Awate [16] used empirical Bayes for denoising in MRI.
The method uses a Markov probability density function (PDF)
to estimate the observed corrupted data and thus use it as a
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prior in the Bayesian. In this way, the Bayesian denoising
scheme bootstraps itself by estimating the prior through the
optimization of an information theoretic metric using the
expectation maximization (EM) algorithm. The parametric
filter named non-local means (NLM) for random noise removal
is analyzed and adapted to reduce the noise in MR images [17].
Jose [18] proposed a filter to reduce random noise in multi-
component MRI by spatially averaging similar pixels using
information from all available image components in order to
perform the denoising process.

In this paper, a wavelet domain denoising procedure based
on the Radon transform is proposed for MR images. The
approach explicitly accounts for the Rician nature of the data.
We employ the Radon transform to the original MRI data in
order to transform it to the Radon domain. This approach is
particularly useful to denoise dark regions because of the noise
bias in low SNR (dark) regions. Furthermore, a translation
invariant wavelet transform is employed to decompose the
sinogram into multiscales for denoising step by step. Finally,
we apply the inverse Radon transform to reconstruct the
original MR images from the denoised sinogram. In the
following sections, we describe our methods as well as our
results from phantom, simulation brain MRI, and real patient
MRI.

2. The distribution of noisy MRI data

One main source of noise in an MRI signal is the thermal
noise [19]. The signal component of the measurements is
present in both real and imaginary channels; each of the
two orthogonal channels is affected by white Gaussian noise
[20]. An MR image is usually reconstructed by computing the
inverse discrete Fourier transform of the raw data. The noise in
the reconstructed complex data is thus complex white Gaussian
noise. The magnitude of the reconstructed MR image is used
for visual inspection and for automatic computer analysis.
Since the magnitude reconstruction is simply the square root
of the sum of two independent Gaussian random variables, the
magnitude image data are described by a Rician distribution.
The term Rician noise is used to refer to the error between
the underlying image intensities and the observed data [21].
Rician noise is not zero; meanwhile the mean depends on the
local intensity in the image [22].

If the real and imaginary data, with mean values AR

and AI , respectively, are corrupted by zero mean Gaussian,
stationary noise with the standard deviation σ , the probability
distribution function of the magnitude data will be a Rician
distribution, as described by

Pmag(M) = M

σ 2
e−(M2+A2)/2σ 2

I0(AM/σ 2), (1)

where I0 is the modified Bessel function of the first kind with
order zero. The image pixel intensity in the absence of noise
is denoted by A, and the measured pixel intensity by M . Here

A is given by A =
√

A2
R + A2

I . Equation (1) is plotted in
figure 1 for different values of the SNR, A/σ . Note that the
Rician distribution tends to be a Rayleigh distribution when
the SNR goes to zero and approaches a Gaussian distribution

Figure 1. The Rician distribution of M for several SNRs (A/σ ) and
the corresponding means.

at a high SNR. So in low-intensity (dark) regions on an
MR image, the Rician distribution tends to be a Rayleigh
distribution. In high-intensity (bright) regions, it tends to be
a Gaussian distribution. For ratios as small as A/σ = 3
(SNR = 10 log10 32 ≈ 10 dB), it starts to approximate the
Gaussian distribution. For a small SNR (A/σ � 1) the Rician
distribution is far from a Gaussian distribution. Note that the
mean of the distributions, M̄/σ , which is shown by the vertical
lines in figure 1, is not the same as A/σ . This bias is due to
the nonlinear transform of the noisy data.

When the SNR is high (A/σ → ∞), an interesting limit
of equation (1) is described as

Pmag(M) ≈ 1√
2πσ 2

e−(M2−
√

A2+σ 2)2/2σ 2

≈ 1√
2πσ 2

e−(M2−A)2/2σ 2
. (2)

This equation shows that for image regions with high signal
intensities the noisy data distribution can be considered as a
Gaussian distribution with variance σ 2 and mean A. Hence,
in high SNR regions the noise can be viewed as a Gaussian
white noise with variance σ 2 and zero mean. Based on
such an assumption, separation of a signal and noise is fairly
straightforward in the wavelet domain. However, the Gaussian
approximation may introduce error for regions with a low
SNR. As the mean of the magnitude image is not equal to the
noise-free image, the magnitude image is biased.

3. Materials and methods

Our method includes four steps. First, we transform the
MR image to the Radon domain using the Radon transform.
Second, the wavelet transform is employed to decompose
sinogram into multiscales. Third, noise variance is evaluated
and a thresholding-based method is applied to denoise. Fourth,
we reconstruct the denoised sinogram to get the original MRI
using the inverse Radon transform.

3.1. Radon transform

The Radon transform of a 2D function is defined as

Rf (α, s) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(s − x cos α − y sin α) dxdy

α ∈ [0, π ] s ∈ R, (3)
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(a) (b)

(c) (d)

Figure 2. Gaussian PDF and the PDFs of the sum of two or more Rician distributed sets. In (a)–(d) the sums in sequence are: Sum =
Pmag(1) + 10∗Pmag(2), Sum = Pmag(2) + 10∗Pmag(3), Sum = Pmag(3) + 10∗Pmag(4), and Sum = Pmag(1) + 5∗Pmag(2) + 5∗Pmag(3) + 10∗Pmag(4).

where s is the perpendicular distance of a line from the origin
and α is the angle formed by the distance vector. According
to the Fourier slice theorem, this transformation is invertible.
The Fourier slice theorem states that for a 2D function f (x, y),
the 1D Fourier transforms of the Radon transform along s are
the 1D radial samples of the 2D Fourier transform of f (x, y)

at the corresponding angles [23].

3.2. The distribution of noise in sinogram data

Rician noise differs from Gaussian noise in that it depends
on the signal intensity, and the PDF of the noise is very
asymmetric for low signal intensities. In brain MR images
different regions have different intensities, i.e. white matter
(WM), gray matter (GM) and scalp have high intensity, and the
noise in these regions is very close to a Gaussian distribution.
But other regions such as skull, nasal sinuses and cerebrospinal
fluid (CSF) have very low intensity [13], so the noise in these
regions is close to a Rayleigh distribution. We sum these
regions along a line and thus sum the noise with different
distributions. The sum of several Rician distributed noises
has a symmetric distribution. Such a sum operation, which
is the Radon transform, makes the distribution of noise close
to a Gaussian distribution. In figure 2, we compare the sum
distribution with the Gaussian distribution with N(μ, σ 2). On
brain MR images, the low-intensity regions have fewer areas
than those with high intensity. For example, the ratio of high-
intensity regions to low-intensity regions can be more than 10
along a projection line during the Radon transform. Figure 2
shows the direct comparison between the Gaussian PDF and
the sum PDF.

In order to measure the similarity degree (R2), we use the
following equation:

R(x, y) = Cov(x, y)/[StdDev(x) · StdDev(y)], (4)

where Cov is the correlation function and StdDev is the
standard variance. This equation is used to measure how well
a regression line approximates the real data points statistically,
e.g. R2 of 1.0 (100%) indicates a perfect fit. From figure 3
we can see that the R2 value is close to 1, indicating that the
distribution of noisy data is close to a Gaussian function. At
the same time we can see that the larger the A/σ the more
similar to Gaussian the sum PDF is. In order to demonstrate
this conclusion further we calculated an additional 24 sets of
the similarity degree (R2) between the real Gaussian PDF and
the PDFs of the sum of two or more Rician distributed sets,
and it is shown in table 1. In the table we can see that all
R2s are over 92%, and all R2s except Pmag(0) + 5∗Pmag(1) and
Pmag(0) + 10∗Pmag(1) are over 95%. Here Pmag(0) is the PDF
of the magnitude data in the air part inside MR images and not
background, because we got rid of noise in the background
using a brain mask before the Radon transform. So it is
reasonable to use techniques based on the assumption of a
Gaussian distribution for sinogram images. In fact, for the
heart and brain images, the bright regions in body images have
a SNR of over 20 dB (A/σ > 10) [24]. Based on the above-
mentioned two facts and equation (2) we demonstrated that the
noise in sinogram images is Gaussian noise with mean μs and
variance σ 2

s . Here from the Radon transform we can obtain
μs = nsμ and σ 2

s = nsσ
2, and it varies with the number of

pixels (ns) along a line through the MR brain image.

3



Meas. Sci. Technol. 22 (2011) 025803 X Yang and B Fei

(a) (b)

(c) (d )

Figure 3. Correlation plots between the real Gaussian PDF and PDFs of the sum of two or more Rician distributed sets. (a)–(d) are the
corresponding correlation plots of (a)–(d) in figure 2, respectively. The horizontal axis is the real Gaussian distribution data and the vertical
axis is the distribution sum data.

Table 1. The similarity degrees (R2s) between the real Gaussian PDF and PDFs of the sum of two or more Rician distributed sets.

Sum R2 Sum R2 Sum R2

Pmag(0) + 5∗Pmag(1) 0.9232 Pmag(0) + 5∗Pmag(1) + 10∗Pmag(2) 0.9509 Pmag(1) + 10∗Pmag(4) 0.9902
Pmag(0) + 5∗Pmag(2) 0.9556 Pmag(0) + 5∗Pmag(2) + 10∗Pmag(3) 0.9898 Pmag(1) + 5∗Pmag(2) + 10∗Pmag(3) 0.9888
Pmag(0) + 5∗Pmag(3) 0.9952 Pmag(0) + 5∗Pmag(3) + 10∗Pmag(4) 0.9845 Pmag(1) + 5∗Pmag(3) + 10∗Pmag(4) 0.9836
Pmag(0) + 5∗Pmag(4) 0.9516 Pmag(0) + 5∗Pmag(1) + 5∗Pmag(2) + 10∗Pmag(3) 0.9590 Pmag(2) + 5∗Pmag(3) 0.9964
Pmag(0) + 10∗Pmag(1) 0.9235 Pmag(1) + 5∗Pmag(2) 0.9541 Pmag(2) + 5∗Pmag(4) 0.9750
Pmag(0) + 10∗Pmag(2) 0.9596 Pmag(1) + 5∗Pmag(3) 0.9953 Pmag(2) + 10∗Pmag(4) 0.9956
Pmag(0) + 10∗Pmag(3) 0.9971 Pmag(1) + 5∗Pmag(4) 0.9501 Pmag(2) + 5∗Pmag(3) + 10∗Pmag(4) 0.9907
Pmag(0) + 10∗Pmag(4) 0.9902 Pmag(1) + 10∗Pmag(3) 0.9975 Pmag(3) + 5∗Pmag(4) 0.9993

3.3. Wavelet transforms

3.3.1. Wavelet definition. Wavelets are mathematical
functions that decompose data into different frequency
components that can be studied with a resolution matched
to their scale. Wavelet transforms are multiresolution
representations of signals and images. They decompose a
signal into a hierarchy of scales ranging from the coarsest
scale to the finest one. Wavelet coefficients of a signal
are the projections of the signal onto the multiresolution
subspaces. Wavelets are functions generated from one single
function (basis function) called the prototype or mother
wavelet by dilations (scalings) and translations (shifts) in the
time (frequency) domain. If the mother wavelet is denoted by
ψ(t) other wavelets ψa,b(t) can be represented as

ψa,b(t) = 1/
√

|a| ∗ ψ((t − b)/a), (5)

where a and b are two arbitrary real numbers. The variables a

and b represent the parameters for dilations and translations,
respectively.

3.3.2. Dyadic discrete wavelet transform. The discrete
wavelet transform (DWT) is an implementation of the
wavelet transform using a discrete set of the wavelet
scales and translation obeying some defined rules. For
practical computations, it is necessary to discretize the
wavelet transform. The scale parameter a is discretized
on a logarithmic grid. The translation parameter b is then
discretized with respect to the scale parameter, i.e. sampling is
done on the dyadic sampling grid (as the base of the logarithm
is usually chosen as 2). The dyadic wavelet transform makes
the scale factor binary discrete, while the translation factor
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maintains continuous change. The discretized scale and
translation parameters are given by a = 2−j and b = k2−j ,
respectively, where j, k ∈ Z, the set of all integers. Thus, the
family of wavelet functions is represented as

ψj,k(t) = 2j/2ψ(2j t − k). (6)

From the multiresolution point of view, the wavelet
decomposition of a discrete time signal x[n] is given by

x[n] =
∑

k

cϕ(j0, k)ϕj0,k(n) +
∞∑

j=j0

∑
k

dψ(j, k)ψj,k(n), (7)

where ϕj0,k , ψj,k are the scaling functions and wavelet
functions, respectively.

The scaling/approximation and the wavelet/detail
coefficients are given respectively as

cϕ(j0, k) =
∑

n

x[n]2j0/2ϕ(2j0n − k), (8)

dψ(j, k) =
∑

n

x[n]2j/2ψ(2j n − k), (9)

where j0 is the starting scale and is always 0. cϕ and dψ are the
scale factor and the wavelet coefficients, respectively, and j is
the decomposition level. The development of the fast wavelet
transform [25] concludes its identity to two-channel subband
decomposition. Thus, it reveals a remarkable relationship
between the DWT coefficients of adjacent scales. Using the
coefficients dψ at a specific level j + 1 we can calculate
the coefficients at level j using a filter bank. The wavelet
decomposition of a 2D signal can be achieved by applying the
1D wavelet decomposition along the rows and columns of the
image separately. This is equivalent to projecting the image
onto separable 2D basis functions obtained from the products
of 1D basis functions

3.3.3. Translation invariant wavelet. Since the DWT
provides good localization in both spatial and spectral
domains, low pass filtering is inherent to this transform. The
DWT is computationally efficient. The only drawback is that
it is not translation invariant, which can introduce artifacts
during image reconstruction and exhibit Gibbs phenomena in
the neighborhood of discontinuities because of the lack of
translation invariance of the wavelet basis. The translation
variance in the discrete wavelet transform is due to the
required decimation operation (downsampling by two). This
problem can be solved by applying additional discrete wavelet
decomposition after shifting the sequence by one sample [26].
From the Radon transform we know that the translation along
α in the Radon domain corresponds to the rotation of the input
image. Although a translation invariant wavelet transform
seems to be useful for this application, its application in both
directions (s and α) leads to suboptimal results compared
with a non-translation invariant wavelet transform. Although
the circular shift along α corresponds to the rotation of the
image, the circular shift along s does not correspond to a
regular geometric distortion. The shift along s in the Radon
domain corresponds to an image significantly different from
the original image. To solve this problem, we only apply a
1D translation invariant wavelet transform along s [27, 28]. In
section 3.5 we will discuss some properties using a 1D wavelet
transform along s.

3.3.4. Threshold-based denoising in the wavelet domain.
The wavelet coefficients of signals after a wavelet transform
contain important information and the wavelet coefficients of
noise correspond to smaller amplitude. In our method, a
suitable threshold value is selected through different scales,
and the wavelet coefficients less than the threshold are set
to zero, while retaining the wavelet coefficients greater than
the threshold. So the noise signal is effectively inhibited.
Finally, the denoised signal is reconstructed using the wavelet
inverse transform. It is well known that for independent
and identically-distributed Gaussian noise x ∼ N

(
μs, σ

2
s

)
; a

threshold β = μs + σs, μs + 2σs, μs + 3σs, . . . will suppress
68.26%, 95.44%, 99.74% of its values. Therefore, we choose
β = μs + cσs , where c is a constant. By taking c between
3 and 4, we can achieve good results. Based on the fact that
the variance in each wavelet scale is also σ 2

s in an orthogonal
transformation we can obtain the final threshold

β = μs + cσs = nsμ + cnsσ. (10)

Under the Gaussian noise assumption, thresholding techniques
successfully utilize the unitary transform property of the
wavelet decomposition to distinguish statistically the signal
components from those of the noise. Our desire, then, is to
remove the estimated noise contribution β from each of the
wavelet coefficient, and obtain the estimated signal. Although
Donoho [29] proved the optimality of soft threshold in theory,
Stein threshold has shown better results in SNR improvement.
Thus

Wf (x̂i) = max(1 − ((nsμ + cnsσ )/ |Wf (yi)|)2, 0)Wf (yi),

(11)

where x̂i is the denoised signal, yi denotes the noisy
observations and Wf (yi) each of the wavelet coefficients.
Finally, we perform the wavelet inverse transform for Wf (xi)

in order to obtain the denoised signal x̂i .

3.4. Noise mean μ and variance σ 2 estimation

Our algorithms require the underlying noise variance σ 2,
which is usually unknown and has to be estimated from
the data. Typical MR images include an empty region of
air outside the patient. A simple estimator is based on the
following argument.

From equation (1) we can obtain a special case of the
Rician distribution in image regions where only noise is
present, A = 0. This is better known as the Rayleigh
distribution, and equation (1) reduces to

Pmag(M) = M

σ 2
e−M2/2σ 2

(12)

This Rayleigh distribution governs noise in image regions
without signals. The mean for this distribution can be
evaluated analytically and is given by

M̄ = σ
√

π/2. (13)

These relations can be used to estimate the ‘true’ noise variance
σ 2 from the magnitude image. So from equation (13) the pixel
values in the region outside the patient provide us with a very
reliable estimator:

σ =
√

2M̄/
√

π and μ = M̄. (14)
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3.5. Properties of our method

The 1D wavelet transform of an image is equal to the projection
of the image onto the 1D basis functions. If we denote
the Radon transform of the image by Rf (α, s), the wavelet
transform coefficients by Wf (·, ·), and the corresponding 1D
orthogonal wavelet basis functions by φ(s), then

Wf (·, ·) =
∫ ∞

0
Rf (α, s)φ(s)ds

=
∫ ∞

0

[ ∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ(s − x cos α

− y sin α) dx dy

]
φ(s) ds

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)

∫ ∞

−∞
[δ(s − x cos α

− y sin α)φ(s) ds] dx dy

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)φ(x cos α + y sin α) dx dy. (15)

By defining h(x, y) = φ(x cos α + y sin α)

Wf (·, ·) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)h(x, y) dx dy, (16)

where h(x, y) in 2D is defined from the wavelet function φ(s)

in 1D, and it is similar to 2D wavelet transforms except that
the point parameter is replaced by a line parameter. The
wavelet is a function with scale and point position, while
h(x, y) is a function with scale and line position. Hence
the wavelet is effective in representing point singularities, and
h(x, y) is effective in representing singularities along the line.
So our transform can capture singularities along lines and
edges in an efficient way.

3.6. Reconstruction

After obtaining the denoised sinogram, we perform the inverse
Radon transform in order to obtain the original image. It is
defined as

f (x, y) =
∫ π

0
R(α, x cos α + y sin α) dα, (17)

where R are the filtered projections. Generally, three different
inverse Radon transform methods are the direct inverse
Radon transform (DIRT), filtered back-projection (FBP) and
convolution filtered back-projection (CFBP) [30]. The DIRT is
computationally efficient, but it introduces some artifacts. FBP
based on the linear filtering model often exhibits degradation
in recovering from noisy data [31]. Spline-convolution
filtered back-projection (SCFBP) offers better approximation
performance than the conventional lower-degree formulation
(e.g. piecewise constant or piecewise linear models) [32].
For SCFBP the denoised sinogram in the Radon domain is
approximated in the B-spline space, while the resulting image
in the image domain is in the dual-spline space. We used
SCFBP to propagate the deniosed sinogram back into the
image space along the projection paths.

4. Evaluation and results

Our denoising method has been evaluated by modified brain
phantom and simulation brain data. We also applied the
method to denoise real brain MR images. We compare with
the optimum linear filter, the Wiener filter [33], which is solely
adapted to a SNR at a single scale. Meanwhile, a traditional
multiscale wavelet method is also applied to these datasets
in order to compare with our method. Here Wiener and
wavelet methods are used to denoise images in the image
domain directly. Finally, in order to prove the efficiency of the
proposed method quantitatively an average SNR is used as a
quality metric. It is given by

SNR = 10 log10

∑
j,k |x[j, k]|2∑

j,k |x[j, k] − x̂[j, k]|2 , (18)

where x[j, k] is the original image x̂[j, k] is the denoised
image, with results averaged over all images and reported as
mean decibels (dB).

In order to validate our method Rician noise is added to
the modified phantom and simulation brain MRI. But while
denoising we can get a mask first through a threshold and
eliminate the noise outside the phantom and brain. The noise
outside the phantom and brain is only used to evaluate the noise
variance. The mentioned SNR in the following section only
expresses the SNR in the phantom or brain except in outside
air. Here for the Wiener filter we used neighborhoods of size
3×3 to estimate the local image mean and standard deviation.
2D and 1D db3 wavelets were used in the wavelet filter and
our method, respectively, and the images were decompounded
into four levels.

4.1. Brain phantom data

Figure 4 illustrates the visual assessment of denoised results on
the brain phantom with different noises and the comparison of
three methods. In order to compare the denoised effectiveness
Rician noise of different degrees is added to this phantom. The
images from top to bottom are the phantoms with different
degrees of noise, and the images from left to right are the
original noised phantom, the denoised result after Wiener, the
traditional wavelet and our method in sequence. It can be seen
that the Wiener filter makes images a little blurred, and both
the traditional wavelet and our method can reduce Rician noise
effectively while retaining phantom detail, but our method can
suppress Rician noise more.

Figure 5 shows the SNR plots between input SNRs and
output SNRs for the three methods. From this figure it can be
seen that our method can improve the SNR more than Wiener
and the wavelet method. At the same time the output SNR
after the Wiener filter grows almost linearly, while the other
two methods can improve less with the increase in the input
SNR in the original image, and approach the SNR curve of
the Wiener filter because the noise is closer to Gaussian noise.

Figure 6 exhibits residuals between the original and
denoised phantoms. Comparing these figures we can see that
the Wiener filter smoothes the whole image and is uniform for
all regions in the image. And the wavelet method performs
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Figure 4. Denoised results of brain phantom with different noise using different methods. The first column is the phantom with different
degrees of noise. The second column is the results after the Wiener filter. The third column is the results after wavelet. The fourth column is
the results after our method.

Figure 5. Input and corresponding output SNR plots for the three
methods. The horizontal axis is the input SNR and the vertical axis
is the output SNR.

better for bright regions than dark regions, namely wavelet
denoising is better for Gaussian noise than Rician noise under
the same condition. The dark part in the phantom is brighter
than other parts in the wavelet residual figure. Finally, our
method can decrease noise for both dark and bright regions,
and its denoised effectiveness in dark regions is better than the
other two methods.

In order to compare the results after different methods
quantitatively, we obtain profiles through the original phantom,

the denoised phantom, and the phantom after the Wiener filter,
the wavelet method and our method as shown in figure 7. The
Wiener filter can only smooth a denoised image in the whole
image, and in the bright region, the wavelet method and our
method have almost the same effect because our method also
applies wavelet to denoise. But for dark regions our method
performs better than the wavelet method because of the noise
distribution. The result after our method is closer to that of the
original phantom.

In figure 8 we compare the difference of the denoised
effect in the Radon domain. Noised, denoised and no-noise
sinograms are shown from left to right in sequence. We obtain
a denoised sinogram that is close to the noise-free sinogram
visually, and it shows that our method has already decreased
the noise in the sinogram.

4.2. Simulation brain data

We obtained the brain MR images from the McGill phantom
brain database for comprehensive validation of the denoising
methods. The MR volume contains 181 × 217 × 181 voxels
and covers the entire brain. Based on the realistic phantom, an
MR simulator is provided to generate specified MR images.
The MR tissue contrasts are produced by computing MR signal
intensities from a mathematical simulation of the MR imaging
physics [34].

As shown in figure 9, the same Rician noise is added to
the whole volume and three slices are shown for comparison
in this figure. By comparing the dark regions (e.g. skull and
CSF) with the bright regions (e.g. WM, GM and scalp) in all
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(a) (b) (c) (d)

Figure 6. Residuals between the original phantom and denoised phantoms. (a) Original phantom; (b)–(d) the corresponding residuals
between the denoised and original phantoms in sequence.

Figure 7. Comparison of horizontal profiles between the original phantom, noised phantom and phantoms denoised using Wiener, wavelet
and our method.

Figure 8. Comparison of the noised (left), denoised (middle) and noise-free (right) sinograms.

denoised images, it can be seen that our method enhances the
image contrast and makes the edges clearer than the other two
methods. The Wiener method smooths the images and makes
whole images blurred. The wavelet method and our method
both preserve image details but our method decreases noise
more, and this point can be seen from the quantitative SNR.
The average SNR of original simulation brain with Rician
noise is 17.88 dB, the average SNR after Wiener is 19.33 dB,
the average SNR after the wavelet method is 23.12 dB, and the
average SNR after our method is 26.84 dB.

In the same way we obtain the residuals between the
original image and denoised image after different methods as
shown in figure 10. As discussed above, the Wiener filter
smooths the whole image and its residuals are almost the same
except for the edge parts, and the wavelet method is better for
bright regions than dark regions, and our method can decrease
noise for both dark and bright regions.

In figure 11, we quantitatively compare the profiles
through the original image, noised image, and the image after
the Wiener filter, wavelet and our method. In this figure,
the Wiener filter only smooths the noised image in the whole

8
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Figure 9. Denoised results of the simulated brain data using different methods. The first column is the noised brain images of different
slices. The second column is the results after the Wiener filter. The third column is the results after wavelet. The fourth column is the results
after our method.

(a) (b) (c) (d)

Figure 10. Residuals between the original image and denoised images. (a) Original image; (b)–(d) the corresponding residuals between the
denoised and original images in sequence.

image and loses the image details. In bright regions, the result
after the wavelet method is almost the same as the result after
our method, but in dark regions our method excels the wavelet
method. We can see the denoised image after our method is
closest to the original image and it has the best denoised effect
among the three methods.

4.3. Real brain data

The denoising method was also applied to real T1-weighted
MR images of human brain. The MR images were
acquired with a 4.0 T MedSpec MRI scanner (Bruker
BioSpin GmbH, Rheinstetten, Germany) on a Siemens Syngo
platform (Siemens Medical Systems, Erlangen, Germany).
The T1-weighted magnetization prepared rapid gradient echo
sequence (MPRAGE) (TR = 2500 ms and TE = 3.73 ms)
was used for the image acquisition. The volume has 256 ×

256 × 176 voxels covering the whole brain yielding a 1.0 mm
isotropic resolution.

Figure 12 illustrates qualitative comparison of denoised
results on T1-weighted MR brain images and the comparison
of different methods. We do not perform any preprocessing
for the original MR brain image. In this figure our method
makes the edges of the MR image clearer and enhances the
image contrast. This can be obtained from the property of our
method; it can capture singularities along lines and edges in an
efficient way. Through comparing the three residuals we can
see that the Wiener method makes the whole image smooth and
that its residuals are bigger at the edge than in other regions.
The traditional wavelet can decrease Rician noise better than
Wiener, and it can decrease the noise in dark regions to some
degree. In brighter regions with a high SNR, our result shows
much less difference from the other two methods, and this
means it does not affect the region with little noise. In dark

9
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Figure 11. Comparison of horizontal profiles between the original image, noised image and images denoised using Wiener, wavelet and our
method.

Figure 12. Qualitative comparison of denoising results obtained with different methods. The first column is the real MR brain image
without any processing. From top to bottom, the second column is the denoised results by Wiener, wavelet, and our method, respectively.
The third column is the corresponding residuals between the original image and denoised image.

regions that have a low SNR, our result shows bigger difference
as compared to the original image than the other two methods,
indicating that it greatly decreases the noise. This figure also

shows that our method can decrease the noise more than the
other two methods, especially for dark regions like skull and
CSF (figure 13).

10
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Figure 13. Qualitative detail comparisons of denoising results obtained with different methods. From left to right: original real image,
denoised images and the corresponding residuals. From top to bottom: Weiner, wavelet and our method.

5. Discussion and conclusion

We developed and evaluated a wavelet domain denoising
method based on the Radon transform for noise removal in
MRI. The new approach explicitly accounts for the Rician
nature of the MR data. In high-intensity (bright) regions of
the MR images, the Rician distribution is well approximated
as Gaussian. In low-intensity (dark) regions, the Gaussian
approximation is no longer valid and the Rician distribution
has two degrading effects: the random fluctuation of pixel
values and the introduction of a signal-dependent bias. Based
on the Rician noise encountered in MRI we apply the Radon
transform to the original MR image, add Rician noise to MR
images to consider the Gaussian distribution for MR sinogram
images.

Our method combines the Radon transform and wavelet
transform and it can be seen as a translation invariant and
orthogonal wavelet transform. Based on the fact that the
shifted Radon transform along s corresponds to an image
significantly different from the original image, we apply a 1D
translation invariant wavelet transform along s. Our method
is similar to a 2D wavelet transform except that the point
parameters are replaced by the line parameters. The wavelet
is a function with scale and point position, while our method
is a function with scale and line position. Hence the wavelet is
effective in representing point singularities. And our method
is effective in representing singularities along the line. So our
transform can capture singularities along lines and edges in

an efficient way. Based on the nature of noise we show how
to obtain accurate thresholds in different scales and evaluate
original noise variance.

Our method can not only effectively decrease Rician noise
in MRI but also preserve the key image details and features.
Brain phantom, a simulation brain MR image and a real brain
MR image are used to validate our method. Our method is
compared with the optimum linear filter at a single scale, the
Wiener filter, and the multiscale traditional wavelet method.
Meanwhile, it can enhance the image contrast, and it performs
better than the traditional wavelet and Wiener methods in
terms of SNR. The experiment results show the superiority of
the proposed scheme and outperform the traditional denoising
methods. Our denoising method can have wide applications
in MR imaging.

Acknowledgments

The authors would like to thank the referees and editor for
some very helpful comments on the original version of the
manuscript.

References

[1] Moseley M E, Liu C, Rodriguez S and Brosnan T 2009
Advances in magnetic resonance neuroimaging Neurol.
Clin. 27 271–19

11

http://dx.doi.org/10.1016/j.ncl.2008.09.006


Meas. Sci. Technol. 22 (2011) 025803 X Yang and B Fei

[2] Petersson K M, Nichols T E, Poline J B and Holmes A P 1999
Statistical limitations in functional neuroimaging: I.
Non-inferential methods and statistical models Phil. Trans.
R. Soc. B 354 1239–60

[3] Gerig G, Kubler O, Kikinis R and Jolesz F A 1992 Nonlinear
anisotropic filtering of MRI data IEEE Trans. Med. Imaging
11 221–32

[4] Alexei A S and Chris R J 2004 Noise-adaptive nonlinear
diffusion filtering of MR images with spatially varying
noise levels Magn. Reson. Med. 52 798–806

[5] Murase K, Yamazaki Y, Shinohara M, Kawakami K, Kikuchi
K, Miki H, Mochizuki T and Ikezoe J 2001 An anisotropic
diffusion method for denoising dynamic susceptibility
contrast-enhanced magnetic resonance images Phys. Med.
Biol. 46 2713–23

[6] McGraw T, Vemuri B C, Chen Y, Rao M and Mareci T 2004
DT-MRI denoising and neuronal fiber tracking Med. Image
Anal. 8 95–111

[7] Delakis I, Hammad O and Kitney R I 2007 Wavelet-based
de-noising algorithm for images acquired with parallel
magnetic resonance imaging (MRI) Phys. Med. Biol.
52 3741–51

[8] Weaver J B, Xu Y S, Healy D M and Cromwell L D 1991
Filtering noise from images with wavelet transforms Magn.
Reson. Med. 21 288–95

[9] Yang X, Li P, Zhang X, Bian Z and Wang B 2007 De-noising
of the Doppler fetal heart rate signal with wavelet threshold
filtering based on spatial correlation 1st Int. Conf. IEEE on
Bioinformatics and Biomedical Engineering, ICBBE 2007
pp 928–31

[10] Healy D M and Weaver J B 1992 Two applications of wavelet
transforms in magnetic resonance imaging IEEE Trans. Inf.
Theory 38 840–60

[11] Nowak R D 1999 Wavelet-based Rician noise removal for
magnetic resonance imaging IEEE Trans. Image Process.
8 1408–19

[12] Pizurica A, Philips W, Lemahieu I and Acheroy M 2003 A
versatile wavelet domain noise filtration technique for
medical imaging IEEE Trans. Med. Imaging 22 323–31

[13] Wink A M and Roerdink J B T M 2004 Denoising functional
MR images: a comparison of wavelet denoising and
Gaussian smoothing IEEE Trans. Med. Imaging 23 374–87

[14] Wirestam R, Bibic A, Latt J, Brockstedt S and Stahlberg F
2006 Denoising of complex MRI data by wavelet-domain
filtering: application to high-b-value diffusion-weighted
imaging Magn. Reson. Med. 56 1114–20

[15] Basu S, Fletcher T and Whitaker R 2006 Rician noise removal
in diffusion tensor MRI Medical Image Computing and
Computer-Assisted Intervention, MICCAI 2006
pp 117–25

[16] Awate S P and Whitaker R T 2007 Feature-preserving MRI
denoising: a nonparametric empirical Bayes approach IEEE
Trans. Med. Imaging 26 1242–55

[17] Manjan J V, Carbonell-Caballero J, Lull J J, Garcia-Marti G,
Marti-Bonmati L and Robles M 2008 MRI denoising using
Non-Local Means Med. Image Anal. 12 514–23

[18] Jose V M, Neil A Thacker, Juan J Lull and Gracian
Garcia-Marti 2009 Multicomponent MR image denoising
Int. J. Biomed. Imaging 2009 897–907

[19] Macovski A 1996 Noise in MRI Magn. Reson. Med. 36 494–7
[20] Anand C S and Sahambi J S 2008 MRI denoising using

bilateral filter in redundant wavelet domain TENCON
2008—IEEE Region 10 Conf. pp 1–6

[21] Gudbjartsson H and Patz S 1995 The Rician distribution of
noisy MRI data Magn. Reson. Med. 34 910–4

[22] Sijbers J, Den Dekker A J, Van Audekerke J, Verhoye M
and Van Dyck D 1998 Estimation of the noise in magnitude
MR images Magn. Reson. Imaging 16 87–90

[23] Jafari-Khouzani K and Soltanian-Zadeh H 2005
Rotation-invariant multiresolution texture analysis using
Radon and wavelet transforms IEEE Trans. Image Process.
14 783–95

[24] Ayres C F 2000 A variational approach to MR bias correction
MSc Thesis University of Minnesota, MN, USA

[25] Mallat S G 1989 A theory for multiresolution signal
decomposition—the wavelet representation IEEE Trans.
Pattern Anal. Mach. Intell. 11 674–93

[26] Pesquet J C, Krim H and Carfantan H 1996 Time-invariant
orthonormal wavelet representations IEEE Trans. Signal
Process. 44 1964–70

[27] Jean-Luc S, Candes E J and Donoho D L 2002 The curvelet
transform for image denoising IEEE Trans. Image Process.
11 670–84

[28] Do M N and Vetterli M 2003 The finite ridgelet transform for
image representation IEEE Trans. Image Process. 12 16–28

[29] Donoho D L 1995 Denoising by soft-thresholding IEEE Trans.
Inf. Theory 41 613–27

[30] Yazgan B, Paker S and Kartal M 1992 Image reconstruction
with diffraction tomography using different inverse Radon
transform algorithms Proc. 1992 Int. Biomedical
Engineering Days pp 170–3

[31] Nam-Yong L and Lucier B J 2001 Wavelet methods for
inverting the Radon transform with noisy data IEEE Trans.
Image Process. 10 79–94

[32] Horbelt S, Liebling M and Unser M 2002 Discretization of the
Radon transform and of its inverse by spline convolutions
IEEE Trans. Med. Imaging 21 363–76

[33] Skiadopoulos S, Karatrantou A, Korfiatis P, Costaridou L,
Vassilakos P, Apostolopoulos D and Panayiotakis G 2009
Evaluating image denoising methods in myocardial
perfusion single photon emission computed tomography
(SPECT) imaging Meas. Sci. Technol. 20 104–23

[34] Kwan R K S, Evans A C and Pike G B 1999 MRI
simulation-based evaluation of image-processing and
classification methods IEEE Trans. Med. Imaging
18 1085–97

12

http://dx.doi.org/10.1098/rstb.1999.0477
http://dx.doi.org/10.1109/42.141646
http://dx.doi.org/10.1002/(ISSN)1522-2594
http://dx.doi.org/10.1088/0031-9155/46/10/313
http://dx.doi.org/10.1016/j.media.2003.12.001
http://dx.doi.org/10.1088/0031-9155/52/13/006
http://dx.doi.org/10.1002/(ISSN)1522-2594
http://dx.doi.org/10.1109/18.119740
http://dx.doi.org/10.1109/83.791966
http://dx.doi.org/10.1109/TMI.2003.809588
http://dx.doi.org/10.1109/TMI.2004.824234
http://dx.doi.org/10.1002/(ISSN)1522-2594
http://dx.doi.org/10.1109/TMI.2007.900319
http://dx.doi.org/10.1016/j.media.2008.02.004
http://dx.doi.org/10.1002/(ISSN)1522-2594
http://dx.doi.org/10.1002/(ISSN)1522-2594
http://dx.doi.org/10.1016/S0730-725X(97)00199-9
http://dx.doi.org/10.1109/TIP.2005.847302
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1109/78.533717
http://dx.doi.org/10.1109/TIP.2002.1014998
http://dx.doi.org/10.1109/TIP.2002.806252
http://dx.doi.org/10.1109/18.382009
http://dx.doi.org/10.1109/83.892445
http://dx.doi.org/10.1109/TMI.2002.1000260
http://dx.doi.org/10.1088/0957-0233/20/10/104023
http://dx.doi.org/10.1109/42.816072


 

Yang X, Fei BW. A new denoising method for MR images, Measurement Science and Technology 

2011;22:025803:1-12. 

 

Copyright 2011 IOP Publishing LTD. One print or electronic copy may be made for personal use only. 

Systematic reproduction and distribution, duplication of any material in this paper for a fee or for 

commercial purposes, or modification of the content of the paper are prohibited. 


	1. Introduction
	2. The distribution of noisy MRI data
	3. Materials and methods
	3.1. Radon transform
	3.2. The distribution of noise in sinogram data
	3.3. Wavelet transforms
	3.4. Noise mean mu and variance sigma 2 estimation
	3.5. Properties of our method
	3.6. Reconstruction

	4. Evaluation and results
	4.1. Brain phantom data
	4.2. Simulation brain data
	4.3. Real brain data

	5. Discussion and conclusion
	Acknowledgments
	References



