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Purpose: Classification of magnetic resonance (MR) images has many clinical and research appli-

cations. Because of multiple factors such as noise, intensity inhomogeneity, and partial volume

effects, MR image classification can be challenging. Noise in MRI can cause the classified regions

to become disconnected. Partial volume effects make the assignment of a single class to one region

difficult. Because of intensity inhomogeneity, the intensity of the same tissue can vary with respect

to the location of the tissue within the same image. The conventional “hard” classification method

restricts each pixel exclusively to one class and often results in crisp results. Fuzzy C-mean (FCM)

classification or “soft” segmentation has been extensively applied to MR images, in which pixels

are partially classified into multiple classes using varying memberships to the classes. Standard

FCM, however, is sensitive to noise and cannot effectively compensate for intensity inhomogene-

ities. This paper presents a method to obtain accurate MR brain classification using a modified mul-

tiscale and multiblock FCM.

Methods: An automatic, multiscale and multiblock fuzzy C-means (MsbFCM) classification

method with MR intensity correction is presented in this paper. We use a bilateral filter to process

MR images and to build a multiscale image series by increasing the standard deviation of spatial

function and by reducing the standard deviation of range function. At each scale, we separate the

image into multiple blocks and for every block a multiscale fuzzy C-means classification method is

applied along the scales from the coarse to fine levels in order to overcome the effect of intensity

inhomogeneity. The result from a coarse scale supervises the classification in the next fine scale.

The classification method is tested with noisy MR images with intensity inhomogeneity.

Results: Our method was compared with the conventional FCM, a modified FCM (MFCM) and

multiscale FCM (MsFCM) method. Validation studies were performed on synthesized images with

various contrasts, on the simulated brain MR database, and on real MR images. Our MsbFCM

method consistently performed better than the conventional FCM, MFCM, and MsFCM methods.

The MsbFCM method achieved an overlap ratio of 91% or higher. Experimental results using real

MR images demonstrate the effectiveness of the proposed method. Our MsbFCM classification

method is accurate and robust for various MR images.

Conclusions: As our classification method did not assume a Gaussian distribution of tissue intensity,

it could be used on other image data for tissue classification and quantification. The automatic classifi-

cation method can provide a useful quantification tool in neuroimaging and other applications.
VC 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3584199]
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I. INTRODUCTION

Many clinical and research applications using magnetic reso-

nance (MR) images require image classification. Unfortu-

nately, classification of MR images can be challenging

because MR images are affected by multiple factors such as

noise, intensity inhomogeneity, and partial volume effects.

Noise in MR images can cause classified regions to become

disconnected. Partial volume effects occur where pixels con-

tain a mixture of multiple tissue types, which makes the

assignment of a single class to these boundary regions diffi-

cult. Intensity inhomogeneity in MR images manifests itself

as a smooth intensity variation across the image. Because of

this phenomenon, the intensity of the same tissue can vary

with respect to the location of the tissue within the image.

The conventional “hard” classification method restricts each

pixel exclusively to one class and often results in crisp

results. Fuzzy C-mean (FCM) classification or “soft” seg-

mentation has been extensively applied to MR images, in

which pixels are partially classified into multiple classes
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using varying memberships to the classes. Standard FCM,

however, is sensitive to noise and cannot effectively com-

pensate for intensity inhomogeneities.

Although an intensity inhomogeneity is usually hardly no-

ticeable to a human observer, many medical image analysis

methods, such as segmentation, registration, and classifica-

tion, can be sensitive to the spurious variations of image

intensities. A number of methods for intensity inhomogeneity

correction of MR images have been proposed in the past. The

intensity inhomogeneity correction methods were categorized

into the prospective and retrospective approach.1 The pro-

spective methods are further classified into sub-categories

that are based on phantoms, multicoils, and special sequen-

ces. The retrospective methods are further classified into fil-

tering, surface fitting, segmentation, and histogram based.

First, statistical model-based methods have been used for

quantification of brain tissues in MR images.2 These meth-

ods typically employ a Gaussian finite mixture model to esti-

mate the class mixture of each pixel by trying to fit the

image histogram. The intensity of a single tissue type is

modeled as a Gaussian distribution and the classification

problem is solved by an expectation-maximization (EM)

algorithm.3 Markov random field (MRF) is developed to

model the spatial correlation and used as prior information

in the EM optimization.4,5 However, it is difficult to estimate

parameters for an MRF model from the images and these

methods still belongs to “hard” segmentation. Fuzzy classifi-

cation normally refers to partial volume (PV) segmentation.

Van et al. performed PV segmentation under EM-MRF

framework,6 where each voxel consists of several different

tissue types with different memberships.

FCM classification methods employ fuzzy partitioning to

allow one pixel to be assigned to tissue types with different

memberships graded between 0 and 1.7 FCM is an unsuper-

vised algorithm and allows soft classification of each pixel

which can consist of several different tissue types.8 Although

the conventional FCM algorithm works well on most noise-

free images, it does not incorporate spatial correlation

information, which makes it sensitive to noise and MR inho-

mogeneity. Different modified FCMs have been proposed to

compensate for field inhomogeneity and incorporate the spa-

tial information.9 A regularization term10 was introduced

into the conventional FCM cost function in order to impose

the neighborhood effect. A geometry-guided FCM (GC-

FCM) method was proposed,11 which incorporates geometri-

cal condition information of each pixel and its relationship

with its local neighborhood into the classification. Recently,

some approaches directly add regularization terms to the

objective function and show increased robustness for classi-

fication of MR images with intensity inhomogeneity.12

Inspired by the Markov random field and expectation-

maximization algorithm,7 various modified FCM methods

were proposed by incorporating different regularization

terms to overcome the problem of being sensitive to

noise.13,14 Pham and Prince used a modified FCM cost func-

tion to model the variation in intensity values via a multipli-

cative bias field applied to the cluster centroids.8 As the

performance of this method degrades significantly with

increased noise, Li et al.15 modified the method and incorpo-

rated a noise suppression and inhomogeneity correction into

the FCM framework. Based on a previously developed

framework of fuzzy connectedness and object definition in

multidimensional scenes,16 Saha et al. have proposed an

extension of this framework that takes into account the local

object size in defining connectedness.17,18 By introducing an

adaptive method to compute the weights of local spatial in-

formation in the objective function, the adaptive fuzzy clus-

tering algorithm is capable of utilizing local contextual

information to impose local spatial continuity, thus allowing

the suppression of noise and helping to resolve classification

ambiguity.19 In our previous study, a multiscale FCM

(MsFCM) classification method for MR images was pre-

sented. 20 This method used a diffusion filter to process MR

images and to construct a multiscale image series. The object

function of the conventional FCM is modified to allow mul-

tiscale classification processing where the result from a

coarse scale supervises the classification in the next fine

scale.21 To address the effect of intensity inhomogeneity on

image classification, we propose an automatic, multiscale

and multiblock FCM (MsbFCM) classification method for

MR images in this study. We construct multiscale, bilateral-

filtered images by increasing the standard deviation of spa-

tial function, and by reducing the standard deviation of range

function. We separate every scale image into multiblock; the

multiscale FCM classification method is applied in each

block along the scales from the coarse to fine levels. Our

MsbFCM method is described in Sec. III.

II. MODEL OF INTENSITY INHOMOGENEITY

The task of MR image classification involves the separa-

tion of image voxels into regions comprising different tissue

types. We assume that each tissue class has a specific value.

Ideally, the signal would consist of piecewise constant

regions. However, imperfection in the magnetic field often

introduces an unwanted low frequency bias term into the sig-

nal, which gives rise to the intensity inhomogeneity.

The bias field that gives rise to the intensity inhomogene-

ity in an MR image is usually modeled as a smooth multipli-

cative field.8,13,22–24 The image formation process in MR

imaging can be modeled as

xi ¼ biyi þ ni (1)

where xi is the measured MR signal, yi is the true signal, bi

is the unknown smoothly varying bias field, and ni is an

additive noise assumed to be independent of bi. Accurate

classification of an MR image thus involves determining an

accurate estimation of the unknown bias field bi and noise ni,

and then removing this bias field and noise from the meas-

ured MR signal.

III. METHOD

III.A. Conventional FCM method

The conventional FCM algorithm is an iterative method

that produces an optimal c partition for the image fxigN
i¼1 by
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minimizing the weighted intergroup sum of squared error

objective function JFCM

JFCM ¼
Xc

k¼1

XN

i¼1

up
ik xi � vkk k2

(2)

where fvkgc
k¼1 is the characterized intensity center of the

class k, and c is the number of underlying tissue types in the

image which is given before classification. The uik represents

the possibility of the voxel i belonging to the class k and it is

required that uik 2 ½0; 1� and
Pc

k¼1 uik ¼ 1 for any voxel i.
The parameter p is a weighting exponent on each fuzzy

membership and it is set as 2.

III.B. Modified FCM (MFCM) method

A conventional FCM method only uses pixel intensity in-

formation and results in crisp segmentation for noisy images.

In order to incorporate spatial information, different MFCM

methods are proposed to allow the neighbors as factors to

attract pixels into their cluster. An MFCM proposed by

Ahmed has the following objective function12

JMFCM ¼
Xc

k¼1

XN

i¼1

up
ik xi � vkk k2

þ a
NR

Xc

k¼1

XN

i¼1

up
ikð
X
xr2Ni

xr � vkk k2Þ (3)

where Ni stands for the neighboring pixels of the pixel i and

NR is the total number of neighboring pixels, which is 8 for a

2D image and is 26 for a 3D volume. a controls the effect of

the neighboring term and inversely proportional to the SNR

of the MR signal.

III.C. MsFCM method based on anisotropic diffusion
(AD) filtering

The above two FCM methods only use a single scale for

classification and do not consider multiscale information. In

our previous study, we developed a modified MsFCM

method based on anisotropic diffusion (AD) filtering.20 The

classification result at a coarser level lþ 1 was used to initi-

alize the classification at a higher scale level l. The final clas-

sification is the result at the scale level 0. The objective

function of the MsFCM at the level l is described below.

Jl
MsFCM ¼

Xc

k¼1

XN

i¼1

up
ik xi � vkk k2

þ a
NR

Xc

k¼1

XN

i¼1

up
ikð
X
xr2Ni

xr � vkk k2Þ

þ b
Xc

k¼1

XN

i¼1

ðuik � u
0

ikÞ
p

xi � vkk k2
(4)

Similarly, uik stands for the membership of the pixel i
belonging to the class k, and vk is the vector of the center of

the class k. xi represents the feature vectors from multiple

weighted MR images, and Ni stands for the neighboring pix-

els of the pixel i. u0ik is the membership obtained from the

classification in the previous scale. The objective function is

the sum of three terms where a and b are scaling factors that

define the effect of each factor term.

III.D. MsbFCM method with bias correction based on
bilateral filtering

Since image classification algorithms can be sensitive to

noise, image filtering can improve the performance of classi-

fication. Due to partial volume effect, MR images often have

blurred edges. Linear filters can reduce noise but may result

in the degradation of image contrast and detail.25,26 Bilateral

filtering can overcome this drawback by introducing a partial

edge detection step into the filtering so as to encourage intra-

region smoothing and preserve the interregion edge. A bilat-

eral filter replaces the pixel value of a neighborhood center

with the average of similar and nearby pixel values. In

smooth regions, pixel values in a small neighborhood are

similar to each other, and the bilateral filter acts essentially

as a standard domain filter, averaging away the small,

weakly correlated signal differences that were caused by

noise.

Bilateral filtering was developed by Tomasi and Mandu-

chias as an alternative to anisotropic diffusion.27,28 It is a

nonlinear filter where the output is a weighted average of the

input. It starts with standard Gaussian filtering with a spatial

kernel. However, the weight of a pixel also depends on a

function in the intensity domain, which decreases the weight

of pixels with large intensity differences. In practice, they

use a Gaussian function in the spatial domain and another

Gaussian function in the intensity domain. Therefore, the

value at the pixel s is influenced mainly by pixels that are

spatially close with a similar intensity. Durand and Dorsey

have shown that 0-order anisotropic diffusion and bilateral

filtering belong to the same family of estimators.28 However,

anisotropic diffusion is adiabatic (energy-preserving), while

bilateral filtering is not. In contrast to anisotropic diffusion,

bilateral filtering does not rely on shock formation, so it is

not prone to stair stepping.29,30 Bilateral filtering is a particu-

lar choice of weights in the extended diffusion process that

is obtained from geometrical considerations. In bilateral fil-

tering, the kernel that plays the same role as the diffusion

coefficient is extended to become globally dependent on in-

tensity, whereas a gradient can only yield local dependency

among neighboring pixels.31

As modeled in Sec. II, the bias field is seen as a smoothly

varying multiplicative field. Although a bias field affects the

intensity of different tissue in the whole image, it does not

affect the relative intensity ratio of different tissue in a small

region.1,32–34 We divide the whole image into multiblocks

and perform a multiscale classification in the small region.

This can overcome the disadvantage of image classification

algorithms that are sensitive to intensity inhomogeneity.

Since the bias filed is a low frequency component it does not

affect the relative intensity of different tissues within a small

region. In order to reduce this effect by intensity inhomoge-

neity, an MR image is divided into many blocks as small as

possible. On the other hand, a small block lacks global
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information so the block cannot be too small. Hence the size

of the block will be determined in the multiblock strategy.

When there is only one tissue in one block, we change the

overlap rate of two neighbor blocks in order to make sure at

least two tissues in one block. A schematic flow chart of our

proposed algorithm for the MsbFCM method is shown in

Fig. 1. We first use a mask for the brain in whole image. We

use the top, bottom, left and right boundary lines. According

to the size of the brain mask, we determine how many blocks

for the classification. If the rectangle includes part of the tis-

sue boundary, we will use the brain mask to select only the

part inside the mask.

The multiscale space represents a series of images with

different levels of spatial resolution. General information is

extracted and maintained in large-scale images, and low-

scale images have more local tissue information. Our multi-

scale description of images is generated by the bilateral

filter. Figure 2 illustrates the scale space which was con-

structed using bilateral filtering.

III.D.1. Bilateral filtering

Bilateral filter is a weighted average of the local neighbor-

hood samples, where the weights are computed based on tem-

poral and radiometric distance between the center sample and

the neighboring samples.35 It smoothes images while preserv-

ing edges by means of a nonlinear combination of nearby

image values.29 Bilateral filtering can be described as follows:

hðxÞ ¼ k�1ðxÞ
ð1
�1

ð1
�1

IðnÞWrs
ðn� xÞWrr

ðIðnÞ

� IðxÞÞdn (5)

with the normalization that ensures that the weights for all

the pixels add up to one.

kðxÞ ¼
ð1
1

Wrs
ðn� xÞWrr

ðIðnÞ � IðxÞÞdn (6)

where IðxÞ and hðxÞ denotes input and output images. Wrs

measures the geometric closeness between the neighborhood

center x and a nearby point n, and Wrr
measures the photo-

metric similarity between the pixel at the neighborhood cen-

ter x and that of a nearby point n. Thus, the similarity

function Wrr
operates in the range of the image function I,

while the closeness function Wrs
operates in the domain of I.

A simple and important case of bilateral filtering is shift-

invariant Gaussian filtering, in which both the spatial func-

tion Wrs
and the range function Wrr

are Gaussian functions

of the Euclidean distance between their arguments. Wrs
is

described as:

Wrs
ðn� xÞ ¼ e�d2

s =ð2r2
s Þ (7)

where ds ¼ n� xk k is the Euclidean distance. The range

function Wrr
is analogous to Wrs

:

Wrr
ðn� xÞ ¼ e�d2

r =ð2r2
r Þ (8)

where dr ¼ IðnÞ � IðxÞj j is a suitable measure of distance in

the intensity space.

III.D.2. Multiscale space of bilateral filtering

When inputting a discrete image I, the goal of the multi-

scale bilateral decomposition36 is to first build a series of fil-

tered images Il that preserve the strongest edges in I while

smoothing small changes in intensity. Let the original image

be the 0th scale (l ¼ 0) and set I0 ¼ I and then iteratively

apply the bilateral filter to compute

Ilþ1
n ¼ 1

k

X
k2X

Wrs;l
ðkÞ �Wrr;l

ðIl
nþk � Il

nÞ � Il
nþk (9)

with

k ¼
X
k2X

Wrs;l
ðkÞ �Wrr;l

ðIl
nþk � Il

nÞ (10)

where n is a pixel coordinate, WrðxÞ ¼ expð�x2=r2Þ, rs;l

and rr;l are the widths of the spatial and range Gaussians,

respectively; and k is an offset relative to n that runs across

the support of the spatial Gaussian. The repeated convolution

by Wrs;l
increases the spatial smoothing at each scale l; and

FIG. 1. Schematic flow chart of the proposed multiscale and multiblock

FCM method.

FIG. 2. Multicale with multiblocks. The scale space is composed of a stack

of the images filtered at different scales where l¼ 0 is the original image.

Image at every scale is divided into blocks.
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we choose the rs;l so that the cumulative width of the spatial

Gaussian doubles at each scale. At the finest scale, we set

the spatial kernel rs;1 ¼ rs. Then we set rs;l ¼ 2lsðl�1Þrs;l�1

for all l > 1 and ls as the coefficient. The range Gaussian

Wrr;l
is an edge-stopping function. Ideally, if an edge is

strong enough to survive after one iteration of the bilateral

decomposition, we would like it to survive all subsequent

iterations. To ensure this property we set rr;l ¼ rr=2lrðl�1Þ

and lr as the coefficient. By reducing the width of the range

Gaussian by a factor of 2lrðl�1Þ at every scale, we will reduce

the chance that an edge that barely survives after one itera-

tion will be smoothed away in later iterations.

III.D.3. Multiscale and multiblock FCM algorithm

After bilateral filtering processing, the MsbFCM algorithm

performs classification from the coarsest to the finest scale,

i.e., the original image. The classification result at a coarser

level lþ 1 was used to initialize the classification at a higher

scale level l. The final classification is the result at the scale

level 0. During the classification processing at the level lþ 1,

the pixels with the highest membership above a threshold are

identified and assigned to the corresponding class. These pix-

els are labeled as training data for the next level l. The objec-

tive function of the MsbFCM at the level l and block n is

Jnl
MsbFCM ¼

Xnc

k¼1

XnN

i¼1

nup
ik

nxi � nvkk k2

þ a
NR

Xnc

k¼1

XnN

i¼1

nup
ik

X
nxr2Ni

nxr � nvkk k2

 !

þ b
Xnc

k¼1

XnN

i¼1

ðnuik � nûikÞp nxi � nvkk k2
(11)

Similarly, nuik stands for the membership of the pixel i
belonging to the class k in block n; and nvk is the vector of the

center of the class k in block n. nxi represents the feature vec-

tors in block n from multiweighted MR images, and Ni stands

for the neighboring pixels of the pixel i. The objective func-

tion is the sum of three terms, where a and b are scaling fac-

tors that define the effect of each factor term. The first term is

the object function used by the conventional FCM method

which assigns a high membership to the voxel whose intensity

is close to the center of the class. The second term allows the

membership in neighborhood pixels to regulate the classifica-

tion toward piecewise-homogeneous labeling. The third term

is to incorporate the supervision information from the classifi-

cation of the previous scale with nûik that is determined as:

nûik ¼
nûik

0

� max
k
ðnllþ1

ik Þ > c

otherwise
(12)

where c is the threshold to determine the pixels with a known

class in the next scale and is set as 0.85 in our implementa-

tion. The classification is implemented by minimizing the

object function Jnl
MsbFCM. The minimization of Jnl

MsbFCM occurs

when the first derivative of Jnl
MsbFCM with respect to the nuik

and nvk are zero, and the final classification and classes’ cen-

ter are computed iteratively through these two necessary

conditions. Taking the derivative of Jnl
MsbFCM with respect to

the nvk and setting the result to zero, the class center is

updated according to Eq. (13). As long as
Pnc

k¼1
nuik ¼ 1, we

used the Lagrangian method which converts this constraint

optimization to an unconstraint problem. The membership
nuik of every pixel i belongs to the class k, and is updated

based on Eq. (14).

nvk ¼

PnN

i¼1

nu2
ikðnxi þ a

NR

P
nxr2Ni

nxrÞ þ bnxi

PnN

i¼1

ðnuik � nûikÞ2

ð1þ aÞ
PnN

i¼1

nu2
ik þ b

PnN

i¼1

ðnuik � nûikÞ2
(13)

nuik¼

1þb
Pnc

m¼1

nûik
nxi�nvkk k2�nûim

nxi�nvmk k2

ð1þbÞ nxi�nvmk k2þ a
NR

X
nxr2Ni

nxr�nvmk k2

 !

Pnc

m¼1

ð1þbÞ nxi�nvkk k2þ a
NR

X
nxr2Ni

nxr�nvkk k2

 !

ð1þbÞ nxi�nvmk k2þ a
NR

X
nxr2Ni

nxr�nvmk k2

 !
0
BBBBB@

1
CCCCCA

(14)

III.D.4. Classification evaluation

To evaluate the classification methods we used two overlap

ratios between the classified results and the ground truth.

The Dice overlap ratio is used for the classification evalua-

tion. The Dice overlap ratio for each tissue type is computed

as a relative index of the overlap between the ground truth A
and the classification result B. It is defined as

Dice ¼ 2ðA \ BÞ
Aj j þ Bj j (15)

At the same time, we define an error overlap ratio between

the classified result and the ground truth for classification

evaluation. The error overlap ratio is computed as an index

of the overlap difference between the classification result

and the ground truth. It is described as

Error ¼ A [ B� A \ B

A
(16)

where A and B are binary classified results from the ground

truth and classification methods, respectively.

IV. EXPERIMENT AND RESULTS

Our MsbFCM classification method has been evaluated

by synthetic images and the McGill brain MR database.37–39

We also applied the method to classify real MR images and

compared the classified results with the manual segmenta-

tion. Meanwhile, in order to compare the performance of

these four fuzzy classification methods, FCM, MFCM, and

MsFCM methods were applied to each dataset.

The four methods used a single set of parameters through-

out the comparisons for the same data. Because our previous

2883 X. Yang and B. Fei: Multiscale and multiblock image classification 2883
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paper has discussed how to select parameters a, b, and k,20

we selected the same values for comparison. For synthesized

images, we set a ¼ b ¼ 0:85 and Ni ¼ 8 for MFCM,

MsFCM, and MsbFCM methods, and set the scale level as 6

for MsFCM and MsbFCM. The diffusion filter was used

when diffusion constant was 15 and the step was 0.125, and

the bilateral filter was performed when rs ¼ 1:2, rr ¼ 25,

and ls ¼ lr ¼ 0:5. Four blocks were used in our MsbFCM.

For simulated brain data and real data, we transformed

the intensity of all images to the range of 0–255, and we

only changed the diffusion constant of the diffusion filter to

150. We selected 16 blocks for our MsbFCM, and the other

parameters with the same as those in the synthesized images.

IV.A. Synthesized images

The synthetic images with three tissue types (labeled as

Class 1, 2, and 3) are shown in Fig. 3(a). In order to test the

algorithm on images with poor contrast, we synthesized the

images with different image quality. Image contrast (IC) is

defined as the relative intensity difference between one class

and its surroundings.

ICð%Þ ¼ 100� Mt �Mbj j=Mb (17)

where Mb is the background intensity and Mt is the intensity

of the tissue. We first give a preset intensity to the center

sphere (Class 2) and define it as Mb. The intensities of Classes

1 and 3 are defined as Mt and are computed as

Mt ¼ Mbð1þ ICÞ for Class 1 and Mt ¼ Mbð1� ICÞ for Class

3 when a contrast is given. After the image is created, 10%

Gaussian noise with a mean of 0 is added to the images to

make SNR¼ 10, and the standard deviation of the added noise

is 10% of the intensity of Class 1. Meanwhile, in order to sim-

ulate intensity inhomogeneity, we added a 35% linear bias

field into the synthetic image. Here 35% indicates the differ-

ence between the maximum and minimum of the multiplied

bias field. For a synthetic image with a bias field and noise,

we multiplied the bias field, and then added the noise into it.

The synthesized image has a size of 128 � 128 pixels.

For five different intensities (Mb= 50, 80, 100, 120, and 150)

and five different contrast (ICs¼ 10, 20, 30, 40, and 50%), a

total of 25 images were synthesized to test the classification

methods. For the four methods, MsbFCM, MsFCM, MFCM,

and FCM, 100 classification experiments were performed on

the synthesized images. The Dice and error overlap ratios of

the classified results with the pre-efined truths were com-

puted for each classification of each image.

FIG. 3. Bilateral and AD filter processing for a synthesized noisy image. (a) Image a1 is the original noisy image. a2 is the original image labeled with three

classes (Class 1, 2, and 3). a3 and a5 are AD filtered results at scale 3 and scale 5, and a4 and a6 are bilateral filtered results at scale 3 and scale 5. (b) The signal

profile along the center line of the noisy image and the original image without noise. (c) and (d) Signal profiles at the scales 3 (c) and 5 (d) of the original noisy

image, with AD filtering, and with bilateral filtering, respectively.
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Figure 3 demonstrates the effectiveness of the bilateral fil-

tering process for the synthesized noisy image. In Fig. 3(a)

a2, the synthesized image consists of three tissue types la-

beled as “Class 1”, “Class 2”, and “Class 3” with a given in-

tensity, and a1 is a synthesized image with noise. a3 and a5

are filtered images after AD filtering processing at the scaled

levels 3 and 5, and a4 and a6 are filtered images after bilateral

filtering processing at the scaled levels 3 and 5. Figure 3(b)

shows the intensity profile through the original synthesized

image and noisy image. Figures 3(c) and 3(d) represent the

intensity profile through the filtered images after bilateral

and AD filtering processing at the scaled levels 3 and 5,

respectively. As the scale increases, the noise is smoothed

within each region, but the intensity difference at the edge

has been enhanced so as to facilitate the classification. AD

filtering can also reduce noise along scales, but bilateral fil-

tering can denoise more under the same condition.

Figure 4 illustrates the visual assessment of the classifica-

tion results on synthesized images and the comparison of the

four methods. The synthesized images all have the same class

distribution but with different image contrasts and intensity

inhomogeneity. For the images with 40% image contrast and

without intensity inhomogeneity, the four classification meth-

ods can successfully restore the class distribution, and the

MFCM and MsFCM methods have more homogeneous

results than the FCM approach. The MsbFCM can classify

the three classes almost without errors. For the images with

40% image contrast and 35% intensity inhomogeneity, the

classification results are almost same. For the images with

20% image contrast and no intensity inhomogeneity, the

MsFCM and MsbFCM methods get better results than the

FCM and MFCM, but the MsbFCM performs better than the

MsFCM. In fact, the MsbFCM achieved acceptable results

for images with 20% contrast and 35% intensity inhomogene-

ity while the other three methods failed. The MsbFCM

method is robust for noise and intensity inhomogeneity.

Figure 5 shows the Dice and error overlap ratios between

the classification results and the ground truth for the three

types of tissue (Class 1, 2, and 3) when synthesized images

do not have intensity inhomogeneity. The Dice overlap ratios

increase as the image contrast increases but the error ratios

reduce. When the image contrast is higher than 40%, the

four methods achieve accurate classification. When the con-

trast decreases, the performance of the FCM, MFCM and

MsFCM decreases, but the MsbFCM method can still

achieve high Dice overlap ratios of more than 90% and low

error overlap ratios of less than 20%. The error bar repre-

sents the standard deviation of the Dice coefficients and error

FIG. 4. Comparison of the classification results using the four methods for synthesized images. The first column contains the original images with the designed

contrast and bias level. The 2nd, 3rd, 4th, and 5th columns are the classification results using the FCM, MFCM, MsFCM and MsbFCM methods, respectively.
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overlap ratios computed from the classification of the five

images generated with a different mean intensity Mb and the

same contrast.

Figure 6 shows the Dice and error overlap ratios between

the classification results and the ground truth for the three

types of tissue (Class 1, 2, and 3) when synthesized images

have 35% intensity inhomogeneity. When the image contrast

is higher than 40%, the four methods achieve accurate classi-

fication. As the contrast decreases, the performance of the

FCM, MFCM and MsFCM methods decreases, especially

when the contrast is less than 30%. However, the MsbFCM

method performs better than other three methods.

IV.B. Simulated MR images

We obtained the brain MR images from the McGill phan-

tom brain database for comprehensive validation of the clas-

sification methods. The MR volume was constructed by

subsampling and averaging a high-resolution (1-mm iso-

tropic voxels), low-noise dataset consisting of 27 aligned

scans from one individual in stererotaxic space. The volume

contains 181� 217� 181 voxels and covers the entire brain;

the realistic brain phantom was then created from manual

correction of an automatic classification of the MRI volume.

An MR simulator is provided to generate specified MR

images based on the realistic phantom. The MR tissue con-

trasts are produced by computing MR signal intensities from

a mathematic simulation of the MR imaging physics. The

MR images also take the effects of various image acquisition

parameters, partial volume averaging, noise, and intensity

nonuniformity into account.

Using the MR simulator, we obtained T1-weighted MR

volumes with an isotropic voxel size of 1 mm and 20 and

40% intensity inhomogeneity at different noise percentages

(0, 3, 5, 7, 9, and 15%). The noise effect was simulated as

Gaussian noise adding to the MR volume with its standard

deviation equal to the noise percentage multiplied by the

brightest tissue intensity. The intensity inhomogeneity was

FIG. 5. Quantitative evaluation of the classification results in synthesized images without bias field. Dice overlap ratios (Left) and error overlap ratios (Right)

for Classes 1, 2, and 3 are shown from top to bottom, respectively. The Y axis is the overlap ratio between the ground truth and the classification results. The

X-axis represents the contrast levels.
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implemented by multiplying the MR volume with a synthetic

inhomogeneity field shape of the specified nonuniformity

level. Prior to the classification, the extracranial tissues, such

as skull, meninges, and blood vessels, had been removed

manually so that the MR images for classification consisted

of only three types of tissue, i.e., gray matter (GM), white

matter (WM), and cerebrospinal fluid (CSF). The database

also provides the ratio of each tissue type at each voxel and

thus serves as the ground truth by assigning the voxel with the

tissue type having the maximal ratio. We selected 2D transverse

slices (Slices Nos. 70, 80, 90, 100, and 110) of the volumes

with different noise levels for the classification evaluation.

These MR images were used by the four classification methods.

Figure 7 demonstrates the classification results on T1-

weighted brain MR images with noise (9%) and intensity

inhomogeneity (20 and 40%). Compared to the ground truth

(a3 and b3), our MsbFCM method (a4 and b4) performed bet-

ter than the FCM (a5 and b5), the MFCM (a6 and b6), and

MsFCM (a7 and b7).

The MsbFCM method was applied to the image with dif-

ferent noise levels. Tables I and II show the Dice overlap

ratios for the different noise levels when intensity inhomoge-

neity is 20 and 40%, respectively. The overlap ratios are

greater than 90 for 40% intensity inhomogeneity and 9%

noise, indicating that the MsbFCM method is not sensitive to

noise and intensity inhomogeneity.

We used both 20 and 40% bias fields with same bias dis-

tribution to simulate the 68% bias field. We applied the 68%

bias field to original simulated MR images, and then added

different noise (3, 5, 7, and 9% of max intensity). Table III

shows the Dice overlap ratios of three tissue types for differ-

ent noise levels when intensity inhomogeneity is 68%. The

overlap ratios of WM are greater than 90% for images with

68% intensity inhomogeneity and 9% noise.

Figure 8 shows the comparison results of the four meth-

ods for the images at different noise levels. As the noise

level increases, the Dice overlap ratios of the other three

methods reduces observably and the error overlap ratios

FIG. 6. Quantitative evaluation of the classification results in synthesized images with 35% bias field. Dice overlap ratios (Left) and error overlap ratios (Right)

for Classes 1, 2, and 3 are shown from top to bottom, respectively. The Y axis is the overlap ratio between the ground truth and the classification results. The

X-axis represents the contrast levels.
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increase remarkably. However, the MsbFCM achieved a

Dice ratio of (83 6 1)% for the gray matter when the noise

level is 15%. The MsbFCM method consistently performed

better than the other three methods for different tissues and

for images at different noise levels.

In order to evaluate how many rectangles would be opti-

mal for segmenting patient data, we obtained T1-weighted

MR volume with an isotropic voxel size of 1 mm and 40%

intensity inhomogeneity at 5% noise. We selected five trans-

verse slices from the volume to determine the number of

blocks. Figure 9 shows the Dice overlap of three tissue types

when different block numbers were used. There is no signifi-

cant difference between 9 and 20 blocks for WM. For CSF

and GM, the number between 12 and 16 works as well. For

CSF, the standard deviation is larger when 12 blocks were

used as compared to 16 blocks.

IV.C. Real MR images

The four classification methods were applied to real T1-

weighted MR images of the human brain. The MR images

were acquired with a 4.0 Tesla MedSpec MRI scanner on a

Siemens Syngo platform (Siemens Medical Systems, Erlan-

gen, Germany). T1-weighted magnetization-prepared rapid

gradient-echo sequence (MPRAGE) (TR¼ 2500 ms and

TE¼ 3.73 ms) was used for the image acquisition. The vol-

ume has 256 � 256 � 176 voxels covering the whole

brain yielding 1.0 mm isotropic resolution. Nonbrain struc-

tures such as the skull were manually removed. Manual seg-

mentation of brain structures was performed in order to

evaluate the classification. Two MR image slices were used

to test the four classification methods.

Figure 10 illustrates the classification of the real MR

brain data. Significant intensity inhomogeneity can be

observed in the MR images. MsbFCM, FCM, MFCM, and

MsFCM were performed on different slices. The MsbFCM

performs better than FCM, MFCM, and MsFCM. The Dice

overlap ratios are 92% for CSF, 84% for gray matter, and

94% for white matter.

V. DISCUSSION AND CONCLUSIONS

A multiscale and multiblock FCM classification method

for MR images was developed and evaluated in this paper.

We used a bilateral filter to effectively attenuate the noise

within the images while preserving the edges between differ-

ent tissue types. A scale space was generated by increasing

the standard deviation of spatial function, by reducing the

standard deviation of range function in the bilateral filter,

and by keeping the general structure information in the

images at a coarser scale. In order to reduce the effect of in-

tensity inhomogeneity, we separate the image into multi-

block. For every block, the classification was advanced

along the scale space to include local information in the fine-

level images. The result at a coarse scale provides the initial

parameter for the classification in the next scale. Meanwhile,

the pixels with a high probability of belonging to one class

in the coarse scale will belong to the same class in the next

level. Therefore, these pixels in the coarser scale are consid-

ered as pixels with a known class and are used as the training

FIG. 7. Classification results of brain MR images with different intensity

inhomogeneity. The original MR image with 9% noise and 20% intensity

inhomogeneity (a1) and with 9% noise and 40% intensity inhomogeneity

(b1) are smoothed after the bilateral filter processing (a2 and b2). a3 and b3

are the ground truth of the classification. a4 and b4, a5 and b5, a6 and b6, and

a7 and b7 are the classification results using the MsbFCM, FCM, MFCM,

and MsFCM methods, respectively.

TABLE I. Dice overlap ratios between the classification results and the

ground truth for the brain data at different noise levels when intensity inho-

mogeneity is 20%.

Noise 0% 3% 5% 7% 9%

CSF 0.9760.00 0.9660.01 0.9460.01 0.9260.01 0.9060.01

GM 0.9760.00 0.9660.00 0.9460.00 0.9360.00 0.9160.01

WM 0.9860.01 0.9760.01 0.9660.01 0.9560.01 0.9460.01

TABLE II. Dice overlap ratios between the classification results and the

ground truth for the brain data at different noise levels when intensity inho-

mogeneity is 40%.

Noise 0% 3% 5% 7% 9%

CSF 0.9560.01 0.9460.01 0.9360.01 0.9260.01 0.9160.01

GM 0.9660.00 0.9560.00 0.9460.00 0.9360.00 0.9160.01

WM 0.9760.01 0.9760.01 0.9660.01 0.9560.01 0.9460.02

TABLE III. The Dice overlap ratios between the classification results and the

ground truth for the brain data at different noise levels when a 68% intensity

inhomogeneity field is applied.

Noise 0% 3% 5% 7% 9%

CSF 0.9260.01 0.9060.01 0.8660.01 0.8360.01 0.8060.02

GM 0.9260.01 0.9060.01 0.8660.01 0.8260.01 0.7860.02

WM 0.9560.02 0.9560.02 0.9360.03 0.9260.03 0.9160.03
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data to constrain the classification in the next scale. In this

way, our MsbFCM method is not sensitive to noise and in-

tensity inhomogeneity; and accurate classifications are

obtained step-by-step. Using the multiscale and multiblock

classification, higher spatial information is also included in

the MsbFCM method. This approach can achieve a piece-

wise-homogeneous solution. Our method was evaluated

using synthesized images, brain MR database, and real MR

images. The classification method is accurate and robust for

noisy images with intensity inhomogeneity.

The computation time can be improved in future imple-

mentation. We used five slices of the simulated volumes

with 7% noise levels and 40% intensity inhomogeneity to

evaluate classification time of the four methods. All the four

methods are implemented in MATLAB 2010a (MathWorks,

Natick, MA) with a desk computer (Dell T7400, X5450*8 @

3.0 GHz, 2.99 GHz, and 16 GB RAM). The average time per

slice for FCM, MFCM, MsFCM, and MsbFCM are 0.1460.01

s, 50.9665.50 s, 120.1567.00 s and 180.7665.21 s, respec-

tively. The classification takes approximately 3 min that can be

significantly reduced if Cþþ and a high-performance worksta-

tion are used for the computation. Furthermore, multiscale clas-

sification for every block can be performed using a parallel

framework to speed up the algorithm.

FIG. 8. Dice overlap ratios (Left) and error overlap ratios (Right) of the four methods, i.e., FCM, MFCM, MsFCM, and MsbFCM. The images were obtained

from the McGill brain database with different noise and 20% intensity inhomogeneity. The results for CSF, GM, and WM are shown from top to bottom,

respectively. The Y axis is the overlap ratio between the ground truth and the classification results. The X-axis represents noise levels.

FIG. 9. Dice overlap ratios of three tissue types when different numbers of

subblocks are used for the classification.
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In this study, we reduced the effect of skull segmentation

errors on classification by manually removing nonbrain struc-

tures such as the skull and scalp. In another report, we devel-

oped an automatic segmentation method for the skull on MR

images,40 which allows us to automatically remove the skull

from the brain MR images. In our segmentation-based attenu-

ation correction methods for combined MR=PET,41,42 we

applied automatic skull segmentation to remove skull and use

our classification to perform automatic classification. The

multiscale and multiblock classification method can be

applied to classify more than three tissue types. It can be used

for classification of other MR images. The size of the block

would need to be adjusted in order to fit into a specific appli-

cation. Our method can be applied to 3D volume data. This

could include more spatial regularization and lead to a better

result. However, a fast 3D bilateral filtering algorithm is

required. As our classification method did not assume a Gaus-

sian distribution of tissue intensity, it could be used on other

image data for tissue classification and quantification. We are

integrating a quantitative image analysis package that com-

bines our registration methods43–45 and classification methods,

which can provide a useful tool in quantitative imaging

applications.
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