
Automatic Segmentation of Right Ventricle on Ultrasound
Images Using Sparse Matrix Transform and Level Set

Xulei Qin1, Zhibin Cong1, Luma V. Halig1, and Baowei Fei1,2,3,*

1Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
2Department of Mathematics and Computer Science, Emory University, Atlanta, GA
3Department of Biomedical Engineering, Emory University and Georgia Institute of Technology

Abstract
An automatic framework is proposed to segment right ventricle on ultrasound images. This
method can automatically segment both epicardial and endocardial boundaries from a continuous
echocardiography series by combining sparse matrix transform (SMT), a training model, and a
localized region based level set. First, the sparse matrix transform extracts main motion regions of
myocardium as eigenimages by analyzing statistical information of these images. Second, a
training model of right ventricle is registered to the extracted eigenimages in order to
automatically detect the main location of the right ventricle and the corresponding transform
relationship between the training model and the SMT-extracted results in the series. Third, the
training model is then adjusted as an adapted initialization for the segmentation of each image in
the series. Finally, based on the adapted initializations, a localized region based level set algorithm
is applied to segment both epicardial and endocardial boundaries of the right ventricle from the
whole series. Experimental results from real subject data validated the performance of the
proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores
for both epicardial and endocardial boundaries are 89.1%±2.3% and 83.6±7.3%, respectively. The
automatic segmentation method based on sparse matrix transform and level set can provide a
useful tool for quantitative cardiac imaging.
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1. INTRODUCTION
Reliable evaluation of the structure and function of heart ventricles from echocardiographic
images is an important issue for clinical examination and diagnosis. Various methods were
proposed to segment the left ventricle (LV) structures. For example, active shape model was
widely used in this area [1]. However, it was difficult to directly segment the LV structures
without any model constraint. Therefore, shape prior was introduced in order to improve the
performance, such as the use of training shape model contours to segment the LV epicardial
boundary [2] and the application of ellipse shape models to constrain the short axis for LV

Copyright 2013 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal
use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or
modification of the content of the paper are prohibited.
*Corresponding author: baowei.fei@emory.edu; Website: www.feilab.org.

NIH Public Access
Author Manuscript
Proc SPIE. Author manuscript; available in PMC 2013 November 12.

Published in final edited form as:
Proc SPIE. 2013 March 13; 8669: . doi:10.1117/12.2006490.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.feilab.org


border detection [3]. Especially, wall thickness constraint was introduced to detect both
endocardial and epicardial boundaries, which were applied to both 2D and 3D
echocardiography segmentations [4, 5]. Meanwhile, other efforts were made for the
automatic segmentation of LV boundaries from echocardiography. Statistical approaches
such as principal component analysis (PCA) based training model [6, 7], boosted shape
detection methods [8], and the use of pre-intensity distributions in images [4]or
radiofrequency (RF) data [9] were applied for this purpose.

Although various methods have been applied to segment the LV images, they cannot be
directly applied to segment right ventricle (RV) on echocardiography because of two
additional problems: (i) poor imaging quality for RV and (ii) irregular geometry of the RV.
Despite the importance of its structure evaluations for clinical diagnosis, RV is often
segmented manually by experts, which is time consuming because hundreds of images in
one image series need to be segmented and also because the irregular shape of RV makes
the segmentation difficult. Therefore, we propose an automatic segmentation framework to
segment RV from echocardiographic series, which combines sparse matrix transform
(SMT), training models, and a level set algorithm.

2. METHODS
The proposed framework contains the training and application stages. Firstly, 450 images
from 9 different echocardiographic series were used to generate the training model. Both
epicardial and endocardial boundaries of RV have been manually defined by a cardiologist
(ZC). Based on the expert's results, a training model was built by the SMT method. After
building the training model, the RV myocardium can be extracted from a new series of
echocardiography in the next application stage. During this stage, the SMT method is used
to extract the eigenimages from the whole series. After that, the main RV region and the
transformation relationship to the training model are calculated by a registration process.
Based on these results, initialization regions for each image in the current series can be
decided by adapting the shape of the training model. Subsequently, based on the
initialization, RV myocardium in each image is segmented by a localized region based level
set algorithm, which is proved suitable for myocardium segmentation [5]. Figure 1 shows
the flowchart of the segmentation framework.

2.1 SMT eigenimages and registration
SMT has been successfully applied in the face recognition area [10]. Comparing with other
methods such as PCA, SMT has several useful advantages: first, it can improve the accuracy
of the eigen-decomposition, particularly when the number of observations is less than the
vector dimension; second, it is computationally fast to apply the resulting SMT eigen-
decomposition. Moreover, a graph based SMT is able to estimate the eigenimages due to the
graphical constraint [11]. Furthermore, SMT needs less sample data and make it possible to
analyze the echocardiographic series, which contains much less sample data than the image
dimension.

SMT extracts the myocardium regions with most motion as eigenimages, which can neglect
other stable structures of non-myocardial regions, such as apex part, as shown in Figure 2(b)
and (c). Because the RV shape is different from other structures, such as atriums and left
ventricle, it can be easily extracted from the SMT eigenimages by registering it with the
mean shape of the training model (Figure 2(e)) [12, 13]. The transformation parameters such
as rotation, shift and scaling, will be applied to the following adapted initialization step in
order to adjust the training model. Meanwhile, this extracted RV shape indicates the most
probable location of the RV in the whole series, which will restrict the searching region
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during the adapted initialization, and thus reduce the calculation time of the SMT training
model and also keep the model variance in a reasonable region.

Moreover, these results will be more robust than just directly adapting training models to
each image because the SMT synthesizes the whole series information and reduces the
effects of poor-quality imaging, such as image regions with missing crucial structures or
bright noise. Similar to the situation that a cardiologist uses the dynamic images of
echocardiography rather than only one static image frame to detect the shape and location of
RV in the clinic, the approach based on SMT and training model is to simulate this human
recognition process for automatic segmentation.

2.2 Adapted initialization and level set segmentation
The training data of inner and outer boundaries of the RV myocardium is processed by the
SMT method. During the application stage, the most similar shape of the training model to
the RV structure in each image is chosen by adapting the weight parameters in their
searching space, which is the initialization for the following level set segmentation [14, 15].

(1)

Where s ¯ is the mean shape of the training model, Ui are the eigen-vectors, bi is the weight
parameters related to eigen-values.

The correct initialization and shape prior constraints are important for the level set
segmentation because the contours can leak out from weak boundaries, especially for RV
regions that can have missing boundaries. The criteria to choose the best parameters of the
training model follow the mean separation energy function:

(2)

where u and v are the mean intensities in and outside of the ROI, respectively. After the
adapted step, each image has an initialization mask for the level set segmentation.

The gray region in Figure 2(e), which is the RV myocardium, corresponds to the negative
level set, and its epicardial and endocardial boundaries correspond to the zero level set. This
localized region based level set framework has been applied to the LV myocardium
segmentation using the method as previously reported [5, 16]. Similarly, our level set
function also contains three aspects: image data, shape prior, and thickness constraint. The
mean separation energy is also applied to calculate the image data energy. The initialization
mask is not only used as initialization but also as the shape prior. The energy calculation is
designed as followed:

(3)

Here, I is the image data, S is the model shape data, λ is a weighted parameter. During the
curve evolution to minimize the energy function E, Eimage tends to make E as small as
possible when evolution nearer to the region edges. On the contrary, Eshape makes E as big
as possible during the evolution farther from its original position. The thickness constraint
HT is defined as a Heaviside function:
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(4)

Where RT is the distance between epicardial and endocardial boundaries at the zero level set
point and N¯ is the inward normal of a point x¯. The thickness constraint keeps the minimal
thickness between both boundaries more than an average value, such as 10 pixels here.

2.3 Segmentation evaluation
Quantitative performance assessment of the method was conducted by comparing the
automatic segmentation results with the corresponding gold standard data from manual
segmentation by a cardiologist. Various methods were used for the evaluation of
segmentation and registration [17–26]. In this study, the Dice similarity was used as the
performance assessment metrics in myocardium segmentation. The Dice similarity was
computed as follows:

(3)

where S and G represent the pixel set of the RV segmentation regions obtained by the
algorithm and gold standard data, respectively.

3. RESULTS
The method was evaluated by eight echocardiography randomly selected from different
subjects' database, totally containing 400 images. Both the epicardial and endocardial Dice
scores are shown in Table 1, which are 89.1%±2.3% and 83.6±7.3%, respectively. The
endocardial Dice scores are lower than epicardial ones because the endocardial region is
smaller and more irregular than the epicardial regions, especially in the apical regions.
Moreover, the papillary tissues also affect the endocardial segmentation accuracy for both
manual and automatic results.

Figure 3 illustrates the results segmented by three different frameworks where the green
solid lines are the detected boundaries of myocardium: (i) a general localized level set
segmentation without adapted initialization, (ii) a localized level set segmentation with an
adapted initialization rather than any shape constraint, and (iii) our proposed one with the
adapted initialization and also the shape constraint. The result segmented by our framework
is compared with the corresponding gold standard (in red) in Figure 3(c3), which shows that
both results are close to each other. As indicated by this comparison, our proposed
framework can achieve satisfactory results.

Figure 4 demonstrates 6 example segmentation images during one heart beating cycle in the
sixth series. The lateral walls of the RV are vague in these images, which is a normal
phenomenon in the RV echocardiographic images that were affected by the lung or other
structures. Even though, our automatic segmentation method still gave reasonable
segmentation results. However, this poor imaging qualities of the RV images, especially at
the lateral walls that entirely disappeared in some images (Figure 4), increased the
disagreements between the auto-segmentation results and the manual ones.

4. DISCUSSION AND CONCLUSION
This study developed and evaluated an automatic segmentation framework for right
ventricle ultrasound images. The segmentation method can automatically segment both
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epicardial and endocardial boundaries from a continuous echocardiography series by
combining sparse matrix transform, a training model, and a level set algorithm. Sparse
matrix transform was applied to extract the eigenimages of current segmented
echocardiograph series to automatically identify the RV location. Based on the extracted
eigenimages, an RV training model is used as the initialization for a localized region based
level set segmentation. Experimental results from human subject data validated the
performance of the proposed framework in segmenting right ventricle from
echocardiography.
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Figure 1.
Flowchart of the automatic ultrasound segmentation framework.
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Figure 2.
The sparse matrix transform (SMT) eigenimages of one ultrasound series. (a) Ultrasound
image series. (b) The combination of first 20 eigenimages extracted by SMT. (c)
Corresponding black-white (BW) image of (b), where the white region indicates the most
probable motion region of the myocardium. (d) Training data by manual segmentation. (e)
Mean shape of the training model. (f) The registration result of the training model and the
SMT eigenimages.
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Figure 3.
The results segmented by different frameworks, where the green solid lines are the detected
boundaries of myocardium. (c1) is the result of image (a1) segmented by the localized
region based level set with the general initialization mask (b1) only. (c2) is the result of
image (a2) segmented by the localized region based level set with an adapted initialization
mask (b2) but without any restriction. (c3) is the result of image (a3) segmented by the
localized region based level set with an adapted initialization mask (b3) and also restricted
by the mask, where the red solid lines are its corresponding gold standard.
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Figure 4.
Segmentation results during one heart beating cycle in the sixth series. The green lines
segment both epicardial and endocardial boundaries of the RV. Note that the lateral wall of
the RV is not clear on the image and it is challenging to segment the boundary.
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