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Abstract
A nonrigid B-spline based point-matching method (BPM) is proposed to match dense surface
points. The method solves both the point correspondence and nonrigid transformation without
features extraction. The registration method integrates a motion model, which combines a global
transformation and a B-spline based local deformation, into a robust point-matching framework.
The point correspondence and deformable transformation are estimated simultaneously by fuzzy
correspondence and by a deterministic annealing technique. Prior information about global
translation, rotation and scaling is incorporated into the optimization. A local B-spline motion
model decreases the degrees of freedom for optimization and thus enables the registration of a
larger number of feature points. The performance of the BPM method has been demonstrated and
validated using synthesized 2D and 3D data, mouse MRI, and micro-CT images. The proposed B-
spline point-matching method can be used to register feature point sets, 2D curves, 3D surfaces,
and various image data.
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1. Introduction
Surface registration is extensively studied and applied in machine vision and medical
imaging. Its applications include object detection and tracking (Dufour et al., 2002;
Malassiotis and Strintzis, 2007), aligning medical images with atlases for analysis and
quantification (Chui et al., 2003; Liu et al., 2004), and multimodality image integration for
diagnosis or surgery planning (Betke et al., 2003; Li et al., 2008). The objective of
registration is to determine a spatial transformation between floating and reference surfaces
that, semantically, have spatial correspondence. The transformation can be seperated as rigid
and nonrigid motions based on the assumption about motion between surfaces (Audette et
al., 2000). Because of shape change, nonrigid matching is required in many applications
such as recognition of human faces, tracking cardiac motion from serial cardiac images
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(Wierzbicki et al., 2004), and registration of brain images between different subjects (Ganser
et al., 2004; Gee et al., 1993).

Surface registration can be implemented by representing surfaces as points or features
(Maurer et al., 1996), or by physical modelling (Ferrant et al., 2001; Stammberger et al.,
2000), in which surfaces are aligned based on relatively dense points which could be points
in both surfaces or subset points extracted from the surfaces. The surface-points based
methods require no extra processing such as feature extraction or definition of a physical
motion model, and can provide a solution of free-form matching without determining feature
correspondence before registration. For point based surface registration, there are two
problems that need be resolved, the point correspondence and the transformation.
Registration could be solved by determining the right correspondence, where high level
information of the points like lines or shapes (Felmar and Ayache, 1996), where spatial
relationships was used as attributes of points to locate point correspondence (Cross and
Hancock, 1998). These methods usually were restricted to affine or projective
transformation and are not well suited to handling outliers. Other popular methods solve the
correspondence and transformation problems iteratively. Most point based registration
methods fall into a similar framework that iterates between two steps: seek correspondence
and solve transformation. These methods are distinguished by the types of transformation to
be recovered, by the way to define the correspondence, and by the approach to solve the
transformation.

Various point registrations have been reported in the literature. Besl and Mckay (Besl and
McKay, 1992) proposed an iterative closest point (ICP) method to find the rigid
transformation between two point sets (Stewart et al., 2003; Zhang, 1994). These methods
are guaranteed to converge to a local minimum for a rigid transformation. In order to
achieve a global result, the two surfaces are assumed to be relatively close or have sufficient
numbers of initial guesses for registration. However, relatively large nonrigid motion
invalidates the assumption, and point correspondence established by the closest points
generates local minima and usually fails to reach a global nonrigid result. The one-to-one
correspondence of the ICP method hinders solving a global nonrigid transformation between
point sets. An alternative strategy is to relax the binary correspondence to fuzzy matching
where a point in one set is partially corresponding to each point in the other set with fuzzy
ratios. One class of the methods models the point alignment as matching of probability
density distribution using statistical modeling of point sets (Roy et al., 2007; Wells, 1997).
Because of probabilistic modeling of point sets, one-to-one correspondence cannot be
enforced. A robust point-matching framework (RPM) was proposed to enforce the
correspondence using a soft-assign technique without the strict one-to-one correspondence
and by joint estimation of the transformation and correspondence using deterministic
annealing (Gold et al., 1998). Chui (Chui and Rangarajan, 2003) extended the framework
into thin plate spline (TPS) based nonrigid registration.

In this paper, we extend the robust point-matching method by using a volumetric B-spline
motion model. The proposed B-spline-based point mathcing (BPM) method allows efficient
registration of surfaces with a large number of points for various applications. Specifically,
we applied the method for image registration in small animal imaging. Small animal
imaging is increasingly used as a pre-clinical tool to identify new imaging agents or to
assess therapeutic efficacy. This involves scanning a cohort of small rodents e.g. mice and
rats at different time points and spatially evaluating the animal response in the course. One
challenging step in the image analysis is the registration of mouse images at different time
points. As a mouse body is quite small and flexible, it is difficult to maintain the animal at
the same position in each imaging session. The registration becomes more difficult when
there is large respiratory motion. Skeletons and skins are easily idenfiable and are robust
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anatomical features presented in micro-CT images. Registration of mouse skeletons using a
point-based surface matching technique can correct the deformation of a mouse whole body
between two time points and allows subsequent refinement of image alignment by intensity-
based registration. In this article, we evaluate the proposed BPM method for registration of
mouse skeletons and alignment of mouse tumors.

2. Method and materials
2.1. Transformation model

Suppose two point sets R: {ri, i=1,2, …P} and V: {va, a=1,2, …,N} are sampled from
reference and floating images, respectively. The term ri or va represents a vector of the
coordinates of the point in the 2D image or 3D volume. We define f as a spatial
transformation that deforms the point set V to match with R, and f(va) is the absolute
position resulting from the transformation.

As rigid or affine global transformation alone may not be sufficient to describe the
deformation, the transformation is modeled as a combination of a global transformation
fglobal(va) and a local deformation flocal(va) described as

(1)

where the global motion fglocal describes the overall position change. We select a
transformation which consists of a rigid transformation and scaling along each axis. For
points in a 3D volume, the global tranformation is described by 3 rotations (θ), 3 translations
(t), and 3 scalings (s), and is wrriten in matrix format. Nine parameters thus determines the
global transformation.

The local deformation flocal describes the local shape change between surfaces. We use the
B-spline free-form deformation model. The model deforms a volume by manipulating a
mesh of control points equally distributed across the volume space. The control point grid
produces a smooth and continous non-linear transformation. If the volume domain is spaced
by a nx × ny × nz uniform grid of control points, the local deformation for va=(x,y,z) is
described as the following:

(2)

where

,
[] is the nearest integer operation, Ø is the B-spline coefficient that is defined at the grid
points, and B represents the cubic B-spline basis function (Rueckert et al., 1999).

In order to discourage unrealistic shape deformation, the local deformation is regularized by
a smoothness penalty that is the second order spatial derivatives of the motion over all the N
points in point set V:

(3)
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The second spatial derivatives in the penalty can be computed as

(4)

The other two derivative entries along y and z have a similar format.

2.2. Cost function for surface point matching
In general, object surfaces are extracted from 3D volume segmentation and surface point
sets are obtained by down-sampling the surfaces. It is difficult to extract the exact
corresponding point sets from two surfaces. The existence of point correspondence for some
points cannot be ensured. We incorporate our motion model into the robust point-matching
framework that does not require one-to-one point correspondence and is robust to noise and
outliers. In the robust point-matching framework, point registration is modeled as a least
square problem of linear assignment. The point correspondence is constructed using a fuzzy
logic method and is enforced to be one-to-one correspondence using the soft-assignment and
deterministic annealing techniques.

For registering two point sets with unknown point correspondence, we would like to map the
two point sets as closely as possible while removing the impact of outlier points that do not
have corresponding partners. Based on the RPM framework, a point va relates to all the

points in R with a fuzzy ratio mai . Therefore, two point sets are brought
into correspondence by a matrix M={mai}. In order to handle an outlier situation where a
point in V does not correspond to any point in R or vice versa, the RPM method added an
extra row and column to the correspondence matrix M. Once a point is identified as an
outlier, the points that correspond to this extra row or column are ignored in the
transformation computation.

As M gives the point correspondence between two point sets, we minimize the following
cost function

(5)

with the normalization requirement of

The explicit bound constraints [lb, ub] are included for each of the rotation, shift and scaling
transformations.

The optimization first evaluates the point set distance weighted by the fuzzy matrix M, then
applies the constraints to the motion, and finally makes the point correspondence to be as
binary (one-to-one correspondence) as possible. We provide the range for each parameter in
the global transformation (scaling, rotation and translation) according to the prior
information. The local transformation is constrained by the second order derivatives as
described in Equation (3). However, even with this smoothness restraint, the transformed
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surface could lose its main structure when M is significantly fuzzy at the beginning of the
optimization processing. Therefore, we constrain the absolute local deformation

 to ensure the predominance of the global transformation. According to the
entropy theory (Yao, 2003), the entropy of the matrix M increases as the matrix becomes
less fuzzy and the matrix entropy reaches its maximum when M becomes a permutation
matrix, meaning either 1 or 0 for each entry. At the final matching step, point sets from both
surfaces are expected to be aligned as close as possible so that M should be as binary as

possible, therefore minimizing the negative entropy of M, that is,.  will
reach a one-to-one correspondence.

The cost function consists of the terms for optimizing both the point correspondence and the
transformation. Similar to the expectation maximization method used in the RPM method,
we minimize the cost function by iterating the two interlocking optimizations for the
correspondence matrix M and the nonrigid transformation f.

2.3. Iteration and updating of the fuzzy correspondence matrix M
The matrix M is updated by evaluating the first derivatives of the cost function (5) with the
current transformation f, and each element of the matrix is described below.

(6)

for i=1,2, …P, and a=1,2,…,N. Same to the RPM method, we also assume that each point
has a small probability to be an outlier point. We define a point as an outlier when the
distance of the point to any point in the other surface is more than 3√κ, which means
mai=exp(-9) for the extra row and column (i=P+1, a=N+1) of matrix M. The parameter κ is
a temperature parameter which weights the fuzziness of M with respect to the distance in the
cost function. Equation (6) indicates that κ provides a distance range in which two points
from both sets have a significant corresponding ratio. When κ has a higher value, M is
fuzzier and the objective function becomes more convex for optimization. As κ gradually
decreases, points very close to each other can have a significant mai, and M becomes less
fuzzy, in other words, the points are more close to one-to-one correspondence. This
phenomenon was employed to construct a deterministic annealing minimization in the RPM
method, which will also be used in this B-spline based registration.

2.4. Solving the transformation parameters

Once M is determined, va is considered to correspond to a point . As
the two point sets achieve one-to-one correspondence, the problem becomes a constrained
least-square fitting of Equation (5) for the transformation f.

Transformation f is resolved in two consecutive steps. First, the global transformation is
solved by a constrained linear least square fitting between v and r¯ using the preconditioned
conjugate gradient method (Horn and Johnson, 1985). Each unknown variable of the 9-
parameter transformation is bounded by [lb, ub] according to the prior information of the
global motion between the point sets. Second, the next step is to solve the B-spline
coefficients at each control point by fitting the square distances after the removal of the
global motion, which is written as the minimization of the following function
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(7)

where Lflocal and flocal are defined in Equations (3) and (2), respectively. The function E is
quadratic for the B-spline coefficients, and the minimum occurs when all the first-order
partial derivatives are zero. Setting the partial derivatives equal to zero leads to the linear
equations AØ = b. The local B-spline deformation can be directly solved using the Cholesky
decomposition (Barrett et al., 1994).

2.5. Optimization using deterministic annealing
Iterations of the optimization for M and transformation f depend on a given κ that specifies
the weight of the correspondence fuzziness. At the initial stage, a wider search range or
more fuzzy correspondence is expected for more convex optimization which means a higher
κ. At the end, a one-to-one correspondence is desired for surface registration, which requires
a low κ. This is analogous to a deterministic annealing scheme where a global solution is
gradually reached as the temperature decreases. Therefore, the energy function is minimized
in a deterministic annealing schedule. The temperature is linearly decreased according to
κnew = 0.90 · κold. At each temperature of κ, the interlocking optimizations are performed
until convergence is achieved. We terminate the annealing procedure when there is no
correspondence change if decreasing κ.

2.6. Framework of the BPM algorithm
Figure 1 shows the pseudo code for our B-spline robust point-matching algorithm.
Minimization of the cost function (5) becomes two interlocking optimizations consisting of
the estimation of correspondence matrix M and a least-square fitting for the transformation
under the deterministic annealing scheme. Before registration, surface points will be
extracted from both surfaces and the coordinates of both point sets are scaled into [0, 1].

We initialize the transformation as a unit matrix indicating no transformation initially. We
start the annealing scheme with κ0 = 0.1. The parameters β and α weight the point-matching
and the transformation constraint, respectively. When the matrix M is fuzzy at a high κ, the
transformation needs to be more rigid for a global matching and also maintains the surface
geometry, so the local motion constraints are expected to be greater. As κ becomes smaller,
a flexible B-spline transformation is desired for a nonrigid alignment. Therefore, the
parameters are set to adaptively decrease following the temperature annealing processing as
α=5κ and β=10κ. Our following experiments on simulation and small animal data show that
the design can be used for 2D and 3D surfaces without significant influence on the final
outcome.

2.7. Registration evaluations
2.7.1. 3D data registration—To test the performance of the method for 3D surface
registration in the presence of noise and outliers, we simulated a sphere in a 64 × 64 × 64
volume with a diameter of 40 voxels. We created a mesh for the surface using commercial
software (AMIRA, Visage Imaging GmbH, Berlin, Germany). The 1501 triangle mesh
vertices were sampled as the surface points for registration. We also down-sampled the
surface to obtain 400 vertices as the boundary points. The volume and point set were first
artificially transformed by an affine transformation and were then deformed with a smooth
nonrigid motion. In order to simulate a realistic motion, the nonrigid motion was generated
from a B-spline interpolation with 12 × 12 × 12 control points over the volume. The
coefficients of the control points were sampled from a Gaussian distribution with a standard

Wang and Fei Page 6

Phys Med Biol. Author manuscript; available in PMC 2014 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



deviation of 8 voxels. The motion at the 400 boundary points was interpolated from the
nonrigid B-spline motion. These point displacements form the boundary condition for a
finite-element based elastic deformation of the sphere. The displacement at the 400
boundary vertices were the force that drives the deformation, which was modeled as linear
isotopic elastic material with Young's modulus of 60 kPa and Poisson's ratio of 0.45 (Fei et
al., 2006). The deformation was computed using the finite element analysis software
FEMLAB (COMSOL, Inc., Burlington, MA). In this way, we generated two 3D surfaces
and obtained 1501 surface points from both surfaces with exactly known deformation.
Although the initial 400 boundary points were sampled from a B-spline interpolation, the
1501 surface points are generated from the finite-element modeling of the volumetric
deformation. We performed the surface registration with a B-spline of 8 × 8 × 8 control
points. The distance between the corresponding point pairs were used to evaluate the BPM
registration method for recovering the synthesized motion.

2.7.2. Small animal image registration—We applied the BPM method to MR images
of tumor-bearing mice that were treated using photodynamic therapy. Registration of tumor
images before and after therapy allows voxelwise assessment of tumor response to therapy
(Fei et al., 2007; Fei et al., 2010), which could provide imaging biomarkers for early
measure of treatment outcome using various methods such as the Parametric Response Map
(PRM) technique (Galban et al., 2009). We conducted MR imaging of the mice before and
24 hour after the treatment for monitoring the therapeutic effect (Fei et al., 2007; Fei et al.,
2010; Wang and Fei, 2010). The whole-body mouse MR images were first registered using
our rigid-body registration method (Fei et al., 2003a; Fei et al., 2003b; Fei et al., 2004; Fei et
al., 2005). Significant global and local deformation was observed. We manually segmented
the tumors from MR images and then aligned the surfaces using the proposed method. We
applied the volumetric transformation to warp the tumor MR images. Twenty four tumor
MR data sets from 24 mice have been examined. The registration was evaluated using the
tumor volume overlapping ratio. The overlapping ratio was defined as the intersection of a
tumor in the reference and registered images over the union of the tumor volumes in both
images.

We also applied the BPM method to register mouse micro-CT images. The significant
nonrigid bone motion in micro-CT images makes intensity-based registration difficult. The
mouse micro-CT volumes were acquired at three different positions. The CT volumes
(resolution: 0.1 × 0.1 × 0.1 mm3) were re-sampled to have a resolution of 0.2 × 0.2 × 0.2
mm3. The images were cropped into a size of 120 × 100 × 200. The mouse bone surfaces
were extracted from the volumes using a thresholding method and were finally down-
sampled to obtain a point set with 4500～5000 points. The downsampling was implemented
by keeping one surface point within a 3 × 3 × 3 window centered at the point and removing
all other surface points within the window. Six mouse micro-CT volumes were registered to
each other by the proposed BPM method with one B-spline grid point per 20 voxels in any
direction. The micro-CT volumes were also registered using the intensity-based B-spline
registration method (Rueckert et al., 1999) in the 3D Slicer software. The method registers
two image volumes using B-spline transformation and minimization of mutual information.
In order to quantitatively evaluate the bone surface registration, five anatomical landmarks
were manually selected from the original and transformed bone skeletons. The distance
between corresponding landmarks were computed to compare the BPM method with the
intensity-based B-spline method.
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3. Results
3.1. 3D registration results

The BPM method was evaluated by the synthesized 3D point datasets (Figure 2). The two
point sets were sampled from the surface of a synthesized sphere and from the elastically
deformed volume. Only equally sampled 150 points from both point sets are displayed in the
figure for better visualization. The 3D and 2D points overlapping clearly demonstrate that
the registration successfully restores the simulated motion. Figure 3 plots the histogram of
the distances between corresponding point pairs before and after registration, where the
distance decreases from 6.5 ± 0.9 voxels before registration to 0.7 ± 0.3 voxels after
registration.

The BPM method was tested with pairs of point sets with motion noise. We added motion
noise to perturb the displacement between each point pair. The noisy motion was sampled
from a Gaussian distribution whose standard deviation was 2%, 5%, 8%, 10%, 15% and
20% of the maximal synthesized local motion. Figure 4 plots the average distance of the
corresponding point pairs after registration, which suggests the registration method is not
sensitive to motion noise if the noise level is less than 10%.

3.2. Results of small animal image registration
The BPM method was evaluated using mouse images. Figure 5 shows the alignment of a
tumor surface before and 24 hours after therapy. There is significant global and local
misalignment between the two surfaces after whole-body rigid registration (Figure 5c). After
the BPM registration, the two surfaces are well aligned (Figure 5e), indicating the
effectiveness of the registration method. We applied the resultant volumetric transformation
to transform the tumor MRI volume and computed the overlapping ratio between the
reference and deformation tumor. The average overlapping ratio for 24 tumors are 94% ±
5%. Figure 6 shows that the proposed registration method is able to match the tumor
boundaries on 24 h MRI image slices to those before treatment.

Our BPM method successfully registered the bone surfaces for six mouse micro-CT
volumes. Figure 7 compares bone surface registration between the intensity-based B-spline
method and our BPM method. Our method can correctly detect the point correspondence
between two surfaces and is able to nonrigidly register the floating surface to the reference.
However, the intensity-based B-spline method has difficulty to maintain the rigidity of bony
structure. We manually selected 5 anatomic landmarks (Figure 8) for registration evaluation.
The Euclidean distance between corresponding point pair was computed before and after
registration. We averaged the distance of each landmark for all the registration experiments.
Figure 8 shows the mean and standard deviation of each point pair distance. The average
distance of the five landmarks decreased from 7.3 ± 4.9 mm before registration to 4.7 ± 2.8
mm after the intensity-based B-spline registration. The distances decreased to 1.6 ± 1.1 mm
after the BPM method. Figure 9 shows two slices in the registered micro-CT volumes.
Compared with the intensity-based B-spline registration method, our BPM method achieves
better alignment between the registered and reference volumes.

4. Discussion and conclusions
We proposed and evaluated a BPM method for nonrigid registration using dense sample
points. The registration method can be applied to feature point sets, 2D curves, 3D surfaces,
or surfaces consisting of multiple objects with outliers. The algorithm solves both the point
correspondence and transformation without landmark portraying or features extraction.
Fuzzy correspondence and deterministic annealing techniques are employed to achieve
global optimization and outlier rejection. We modified the robust point-matching framework
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by integrating a motion model with a global transformation and a B-spline local
deformation. Prior information about translation, rotation and scaling can be incorporated
into the optimization and can be used to constrain the local deformation.

We used the deterministic annealing scheme for the optimization during registration, which
has been shown to enable more robust registration than the classic ICP approach. We have
observed that the global structures are registered at the high temperature κ, and that nonrigid
local structures are aligned at low temperature because of more binary correspondence and
because of the synchronized decreasing of the local motion constraint. Our motion model
enables straightforward restriction of the global motion and dynamic control of the local
transformation. The classic rigid ICP approach seeks a local optimal solution and assumes
the rough alignment of two surfaces. Therefore, the significant global motion might not be
solved by the rigid ICP approach before nonrigid registration. We emphasize the global
motion at the high temperature. Therefore, the method is robust to local minima, especially
when the correspondence is fuzzy at a high temperature.

Our BPM method is robust to motion noise and outliers that often affect the performance of
point-based registration. Point noise and outliers can be from image acquisition and
rendering. In our method, temperature κ weights the fuzziness of point correspondence and
gives a search distance range for point correspondence. We assume that each point has a
small prior probability to be an outlier point and add one row and column for outliers in the
correspondence matrix. Therefore, if a point is far away from each reference point, for
example, greater than 3√κ the normalization of the row or column of the correspondence
matrix M makes the outlier row or column dominates the correspondence. Hence, by
thresholding the outlier entry in M, the outlier point can be recognized and removed from
the transformation. This outlier registration approach is consistent with the strategy
proposed by (Feldmar and Ayache, 1996) where those points with a distance of greater than
3 times of the standard deviation of a Gaussian distribution were rejected as outliers. Our
experiments on the 3D data set demonstrated the reliability of the BPM method for point
sets in the presence of motion noise and outliers.

Longitudinal comparisons between subject's baseline and follow-up images have been
widely performed in small animal imaging studies in order to assess drug or treatment
efficacies. A challenge in this broad application is the presence of large whole-body
deformation which creates convergence problems for intensity-based registration methods as
illustrated in our results of mouse volume registration. Generally, the intensity-based
deformable registration methods have a limited range of seeking transformation and thus
typically require a rigid transformation in order to get two images roughly aligned in the
preprocessing step (Hill et al., 2001; Pluim et al., 2003). Li et al. (Li et al., 2008) has used
the TPS-RPM method with two sets of points from bone and body surfaces to provide an
initial condition for intensity-based registration. Compared to the TPS-based method, our
BPM method decreases the degrees of freedom from thousands parameters to a small
number of B-spline coefficients and thus it is able to achieve high computational efficacy for
surfaces with larger number of points. Our BPM method has demonstrated the ability to
register whole-body mouse micro-CT images that were represented by thousands of dense
points. We implemented the proposed method on a computer with 2.67GHz Intel Xeon CPU
X5650 using Matlab 2010a. For the mouse skeleton registration, the average runtime of the
BPM algorithm was 45 minutes for both the reference and floating surfaces with
approximate 4,500 points. The speed can be improved with a high performance computer
and C++ implementation.

In summary, we developed and evaluated a B-spline based robust point-matching method.
The registration method avoids identification of point correspondence but solves both point
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correspondence and nonrigid transformation at the same time. The BPM approach can
reduce the degrees of freedom, improve computation efficiency, and can be used for various
imaging applications.
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Figure 1. Pseudo-code of B-spline nonrigid robust point-matching algorithm
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Figure 2.
Registration of 3D synthesized point sets. (a) The two point sets with known simulated
motion before registration. The transformed point set is labeled with empty circles. The
reference point set is labeled with solid dot points. (b) The overlapping of the two point sets
after registration. The 3D points in (a) and (b) are projected to the X-Y plane and the results
are shown in (c) and (d), respectively. The points are matched after registration (b, d).
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Figure 3.
Histogram of the mean distances between corresponding point pairs before and after
registration. The distance of 1501 point pairs before registration is 6.5 ± 0.9 voxel and
becomes 0.7 ± 0.3 voxel after registration.
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Figure 4.
Effect of motion noise on the performance of the BPM method. Y axis shows the mean
distances of the point pairs after registration. X asis is the level of motion noise. Motion
noise is sampled from a Gaussian distribution whose standard deviation is the percentage
noise level of the maximal simulated motion.
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Figure 5.
Registration of 3D tumor surfaces from MR images. (a) The floating surface with the
triangle surface elements, (b) The reference surface, (c) The global and local difference
between the reference and floating surfaces. (d) The transformed surface from (a) by using
the BPM method. The overlap of the transformed and reference surfaces is shown in (e),
indicating the alignment of the two surfaces after registration.
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Figure 6.
Registration of 3D tumor volumes. (a, b, c) are 3 slices from a tumor MRI volume 24 h after
treatment, (d, e, f) are the slices from the tumor MRI before treatment. (g, h, i) are the slices
from the transformed 24 h MRI volume which has been registered to the volume before
treatment by using the proposed BPM method. White contours are the 3D points for the
tumor surface matching. The tumor shape from (g, h, i) match with those from (d, e, f).
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Figure 7.
Comparison of the BPM and intensity-based B-spline methods. Left: The reference surface
(yellow) and the floating surface (red) of a mouse bone skeleton before registration. Center:
The reference surface (yellow) and the transformed surface (red) after intensity-based B-
spline registration. Right: The two surfaces after BPM.
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Figure 8.
Evaluation and quantitative comparison between intensity-based B-spline and BPM
methods. Left: Five anatomical landmarks are identified on both surfaces for registration
evaluation. Right: The average distances of the landmark pairs before and after registration
using the two methods.
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Figure 9.
Comparison between intensity-based B-spline and BPM methods for micro-CT image
registration. First column: Floating images. Second column: Reference images at the same
slice number with respective to the volume. Third column: Registered images after BPM.
Fourth column: Registered images after intensity-based B-spline registration.

Wang and Fei Page 21

Phys Med Biol. Author manuscript; available in PMC 2014 June 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


