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Abstract

As an emerging technology, hyperspectral imaging (HSI) combines both the chemical specificity

of spectroscopy and the spatial resolution of imaging, which may provide a non-invasive tool for

cancer detection and diagnosis. Early detection of malignant lesions could improve both survival

and quality of life of cancer patients. In this paper, we introduce a tensor-based computation and

modeling framework for the analysis of hyperspectral images to detect head and neck cancer. The

proposed classification method can distinguish between malignant tissue and healthy tissue with

an average sensitivity of 96.97% and an average specificity of 91.42% in tumor-bearing mice. The

hyperspectral imaging and classification technology has been demonstrated in animal models and

can have many potential applications in cancer research and management.
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1. INTRODUCTION

Head and neck cancer refers to malignancy starts in the nasal cavity, oral cavity, pharynx,

larynx, paranasal sinuses, nasal cavity, and salivary glands. Over 90% of head and neck

cancers are squamous cell carcinoma of the mucosal surfaces at the head and neck region

[1]. More than a million patients are diagnosed each year with squamous cell carcinoma of

the head and neck (HNSCC) worldwide [2]. Survival and life quality of the patients

correlate directly to the size of the primary tumor at first diagnosis, therefore, early detection

of malignant lesions could improve both the incidence and the survival [3].
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Traditionally, a conventional oral examination using incandescent light is the standard

method for oral abnormality [4] [5] and cancer screening, but it does not identify all

potentially premalignant lesions, nor accurately detect the small proportion of biologically

relevant lesions that are likely to progress to cancer [6]. Visual examination followed by

biopsy of suspicious tissue sites is usually performed to make definitive diagnosis [7].

However, this process is subjective and limited by the experiences and skills of the

clinicians. Furthermore, it could be challenging to delineate the margin of the lesion, which

makes the choice of biopsy sites difficult [8]. Optical Imaging has the potential to solve

these clinical challenges.

It has been reported that optical spectroscopy could detect malignant lesions before they

become macroscopically visible, by correlating early biochemical and histological changes

in oral tissue with spectral features in fluorescence, reflectance, and light scattering spectra

[7]. However, spectroscopy is only a point measurement method, which is generally used to

obtain an entire spectrum of a single tissue site within a wavelength of interest. It needs to

scan the area over time in order to acquire a spatial distribution about the chemical

composition of tissues.

Recently, hyperspectral imaging has exhibited great potential in the diagnosis of cancer such

as cancers in the cervix, breast, colon, gastrointestine, skin, ovarian, urothelial carcinoma,

prostate, esophageal, trachea, oral tissue, tongue, and brain [9]. HSI acquires images over

continuous spectral bands across a wide range of electromagnetic spectra, which combines

both the chemical specificity of spectroscopy and the spatial resolution of imaging [10].

Compared to optical spectroscopy, HSI is able to capture images of a large area of tissue

noninvasively, without the administration of contrast agents.

HSI has been reported to detect head and neck cancer by several researchers. In our group,

we imaged pathological slides using a hyperspectral camera and reported the detection of

HNC metastasis ex vivo with promising sensitivity and specificity [11]. Liu et al. [12]

measured and analyzed the reflectance spectra of human tongue based on the sparse

representation of spectral information of each pixels. However, these classification methods

only utilized the spectral information of individual pixels without considering the spatial

relationship of neighboring pixels. Roblyer et al. [13] [14] reported the use of a

multispectral digital microscope (DMD) for the detection of oral neoplasia in a pilot clinical

trial. The proposed DMD was a multimodal imaging method which combined the

fluorescence, narrow-band (NB) reflectance, and orthogonal polarized reflectance (OPR)

modes. They observed decreased blue/green autofluorescence and increased red

autofluorescence in the lesions and increased visibility of vasculature with NB and OPR

imaging. However, their method was limited to a few spectral bands within the ultraviolet

(UV) and visible (VIS) light regions. In our research, we explored the spectral difference of

normal and cancerous tissue spectra ranging from the visible to near infrared region, which

has higher penetration depth and could potentially provide more valuable information for

cancer diagnosis.

HSI generates large amount of high dimensional data, therefore automatic processing

methods are indispensable for the interpretation of hyperspectral data. However,
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classification of hyperspectral images is challenging due to the high spatial resolution, high

dimensionality of spectral bands, and high redundancy caused by high correlation in

adjacent bands [9]. Traditional classification methods suffer from two aspects: (1) Pixel-

based methods treat each pixel independently without considering the spatial relationship of

neighboring pixels, and the classification methods based on high dimension of the spectral

features are time-consuming. (2) Dimension reduction methods, such as principal

component analysis (PCA) [15], independent component analysis (ICA), maximum noise

fraction (MNF), sparse matrix transform [16] [17], etc. require spatial rearrangement by

vectorizing all images into two-way data. In order to utilize both spectral and spatial

information, and to perform dimension reduction without changing the three dimensional

structure of hyperspectral data, we introduce a new spectral-spatial classification scheme,

which involves spectral-spatial representation and dimension reduction based on tensor

modeling for head and neck cancer detection. To our best knowledge, this study represents

the first application of tensor-based methods in cancer detection with hyperspectral imaging.

2. METHODS

2.1 Hyperspectral Imaging System

Reflectance images were acquired by a CRI Maestro in-vivo imaging system, which mainly

consists of an internal optics, a flexible fiber-optic lighting system, a 16-bit high-resolution

charge-coupled device (CCD), a solid-state liquid crystal filter (LCTF), and a spectrally

optimized lens. The system is a light-tight apparatus that uses a Cermax-type, 300-Watt,

Xenon light source, which spans the electromagnetic spectrum from 500 nm to 950 nm. The

active light sensitive area of the CCD is 1,392 pixels in the horizontal direction and 1,040

pixels in the vertical direction. For image acquisition, the wavelength setting can be defined

within the range of 450-950 nm with 2 nm increments; therefore the data cube collected was

a three-dimensional array of the size 1,040 × 1,392 × n. n is determined by the wavelength

range and increments as chosen by the user. The field of view (FOV) is from 3.4 × 2.5 cm to

10.2 ×7.6 cm with variable zoom.

2.2 Hyperspectral Imaging Experiment in Animals

We used tumor-bearing mice for the HSI experiments. A head and neck tumor xenograft

model using HNSCC cell line M4E was adopted in the experiment. The HNSCC cells

(M4E) were maintained as a monolayer culture in Dulbecco’s modified Eagle’s medium

(DMEM)/F12 medium (1:1) supplemented with 10% fetal bovine serum (FBS) [18]. M4E-

GFP cells which are generated by transfection of pLVTHM vector into M4E cells were

maintained in the same condition as M4E cells. Animal experiments were approved by the

Animal Care and Use Committee of Emory University. Four female mice aged 4-6 weeks

were injected with 2 × 106 M4E cells with green fluorescence protein (GFP) on the lower

back.

HSI scans were performed approximately three weeks post tumor cell injection. For each

mouse, we acquired two HSI cubes at two different time points. During the image

acquisition, each mouse was anesthetized with a continuous supply of 2% isoflurane in

oxygen. First, both the interior infrared and the white excitation were opened for reflectance
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image acquisition with 50 ms exposure time. Reflectance images contain 251 spectral bands

from 450 to 950 nm with 2 nm increments. Then, blue excitation and 50 ms exposure time

were selected for the fluorescence image acquisition. Tumors show green signals in

fluorescence images due to tumor cells with GFP. Since tumors grow mostly on one side of

the body, a mirror was used to aid in capturing the entire tumor while imaging. In this study,

we used GFP fluorescence images as the gold standard for the evaluation of cancer detection

by HSI.

2.3 Data Preprocessing

Data preprocessing consists of three steps. First, in order to remove the influence of the dark

current, raw image cubes and white reference image cubes were corrected by subtracting a

dark image cube from each acquired image cubes. To get the white and dark reference

image cubes, a standard white reference board was placed in the field of view, and the dark

currents were measured by keeping the camera shutter closed. Second, in order to produce

the spectra such that a higher absorbance of light gives a positive peak, the data cubes were

converted to optical density by taking the negative decimal logarithm of the ratio between

the images of the tissue and the images of the white reference at each pixel in the cube [19].

Moreover, after the conversion to optical density, data can be analyzed using standard

spectroscopic algorithms. Finally, the GFP spectral bands, i.e. 508 nm and 510 nm in our

case, were removed from the image cubes to avoid the effect of GFP signals on the

classification process. Filtering methods may be used as a pre-processing step to reduce

noise in images [20] [21].

2.4 Tensor Decomposition for Feature Extraction and Classification

Hyperspectral data is composed of hundreds of gray images over a wide range of

electromagnetic spectra. For each pixel in the image, the intensity over each spectral band

forms a spectral curve, which is the spectral feature used in pixel-based classification

method as shown in Figure 1.

Tensor provides a natural representation for hyperspectral data. In the remote sensing area,

tensor modeling has been increasingly utilized for target detection [22], denoising [23],

dimensionality reduction [24] [25], and classification [26] [27-29]. An N-way or Nth-order

tensor X ∈ RI1×I2×…×In is a multidimensional array represented using N indices. A first-

order tensor is a vector, a second-order tensor is a matrix, and tensors of order three or

higher are called higher-order tensors [30]. The order of a tensor is the number of

dimensions, also known as modes. In this study, we used the Tucker tensor model [31].

Tucker decomposition is a form of high-order principle component analysis (PCA). An N-

way Tucker tensor X can be decomposed into a core tensor G ∈ℝR1×R2×…×RN multiplied or

transformed by a set of component matrices

 [32]:
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where symbol “°” represents outer product, G×1A(1)×2A(2)…×NA(N) denotes the

multiplication in all possible modes of a tensor G and a set of matrices A(n).  is an

approximation of X and ε presents the approximation error.

To fully exploit the natural multi-way structure of hyperspectral data, we construct a

spectral-spatial representation by dividing each image in the hypercube with a dimension of

1,024×1,392×249, where 1,024 and 1,392 denotes the row and column number of the

hypercube, respectively and 249 denotes the number of spectral bands, into small local

patches, each of which consists of I1×I2 pixels. We assume that within each neighborhood,

each pixel has the same label (tumor or normal) since the spectral property of each pixel is

similar. Therefore, we can form a 3 way tensor X∈ ℝI1×I2×I3(I3 = λ represents the number of

spectral bands), which incorporates both the spatial and spectral information. Figure 2

illustrates the spectral-spatial tensor representation of the hypercube.

In this study, eight hypercubes from four mice with head and neck xenograft tumors were

used for the hyperspectral image analysis. The leave-one-out cross validation method was

used for the evaluation by dividing the eight image cubes with one of these cubes as testing

data and the rest as training data. For each hypercube, we used the GFP composite image as

the gold standard to delineate the tumor margin. The training data was constructed by

concatenating K sample patches as a 4-D tensor of size I1×I2×I3×K, and the testing data was

formed in the same manner. We first performed the third-order orthogonal tucker tensor

decomposition along the mode-4 on the training data, using higher order discriminant

analysis (HODA) [32], which is a generalization of linear discriminant analysis (LDA) for

multi-way data. After the Tucker decomposition, the core tensor G∈ℝP×Q×R, which

expressed the interaction among basis components, was vectorized into a feature vector with

a length of P×Q×R as the training feature. The dimension of the tensor feature can be much

less than that of the original pixel-based feature. Therefore, dimension reduction can be

achieved by projecting the original tensors X to the core tensors G with proper dimensions

for P, Q, R. To extract features from testing data, the basis matrices A(n) found from training

data is used to calculate the core tensor, and the corresponding core tensor was then

converted into a testing feature vector. If the feature dimension is still high after the feature

extraction step, feature ranking or feature selection method can be applied to further reduce

the feature dimension. Finally, a classifier is used to classify the tissue to be tumor or normal

tissue. The flowchart for the classification framework is illustrated in Figure 3.

2.5 Evaluation Methods

Accuracy, sensitivity, specificity are commonly used performance metrics in medical image

processing literatures [33] [14] [34] [35]. To evaluate the performance of classifiers,

accuracy, sensitivity, specificity and F-score were investigated in the experiment. Table 1
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shows the confusion matrix, which contains information about actual and predicted

classification results performed by a classifier.

The definitions of accuracy, precision, sensitivity, specificity are as follows:

F-score is the harmonic mean of precision and sensitivity:

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this study, we chose the patch size of 3 × 3 to retain the local spatial and spectral

information in a tensor structure. Each HSI cube was divided into 346 × 464 = 160,544

patches, including both tumor and normal patches. Since a tumor region was much smaller

than the normal region, we randomly chose the same number of patches from the normal

tissue region as that of the tumor patches, and then concatenated all the tumor and normal

patches from seven of the HSI cubes as the training tensor with a dimension of 3 × 3 × 249 ×

K (K is the number of all the training patches). Similarly, testing tensor was constructed by

the patches from the rest mouse.

After feature extraction by Tucker tensor decomposition, the dimension of the features was

still high for classification, so we ranked the extracted features using fisher scores [36]. A K-

nearest neighbor (KNN) classifier was used to classify the data with different feature

dimensions. As can be seen from Figure 4 (a), although the sensitivity went up slightly and

the specificity went down as feature dimension went higher, the classification accuracies of

the eight mouse data were not sensitive to feature dimensions, which indicate that the feature

dimension can be significantly reduced without sacrificing the accuracy. Therefore, we

selected the top-one dominant feature for classification.

Furthermore, we also implemented a pixel-based classification method using the averaged

absorbance spectra of each pixel over each local patch. First, a spectral feature vector

consisting of optical density values from all the image bands for each pixel of a mouse was

formed, and then centered by subtracting the mean values. Afterwards, PCA was performed

to reduce the feature dimension. Finally, the original hypercube was approximated by the

inverse principle component transformation, with the first few bands containing the majority

of information residing in the original hypercube [37]. KNN classifier was employed to

classify the data with different feature dimensions. Figure 4 (b) shows that PCA feature

dimension has significant effect on the classification accuracy. As the feature dimension

grew higher, the classification accuracy, sensitivity, and specificity became much higher.

Although the first PCA image band has the highest contrast or variance, the classification

accuracy only achieved about 50%. While the top tensor feature alone achieved an accuracy

of around 90%. Therefore, higher feature dimension and longer classification time is needed
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in order to achieve better accuracy for the pixel-based PCA method. As illustrated in Figure

4 (b), more than 100 features were required in order to obtain an accuracy of 80% with the

PCA dimension reduction method. The tensor-based method kept the nature structure of

hyperspectral data, and the dimension reduction based on tensor features significantly

reduced the classification time.

After feature dimension reduction, the top tensor feature was selected for classification. We

used Support Vector Machine (SVM) as our classifier, and chose the Gaussian radial basis

function (RBF) as the kernel function for SVM. We performed three-fold cross validation

(CV) and a grid search on the training data to select the optimal value for parameter C and g

over the range of log2 C ={−5, −4, …, 0, …, 4, 5} and log2 g ={−5, −4, …, 0, …, 4, 5}.

Then a new SVM model was trained with the optimal parameters on seven mice data, and

the performance of that model was tested on the rest mouse. For each mouse data, tumor

dataset consisted of all the patches within the tumor region, and normal dataset was

randomly selected from the normal tissue region with the same size as the tumor. With only

one feature dimension, the classification time was significantly reduced.

To compare the pixel-wise method with the tensor-modeling method, we ranked the

significance of pixel absorption value at each wavelength from 450 nm to 950 nm

(excluding the two GFP bands) according to Fisher’s score, and picked the pixel with the top

absorption value for classification. Similarly, we used the SVM classifier and compared it

with the proposed method. Three-fold cross validation (CV) and a grid search were

performed to find the optimal parameter C and g over the range of log2 C ={−5, −4, …, 0,

…, 4, 5} and log2 g ={−5, −4, …, 0, …, 4, 5}.

The classification accuracy, sensitivity, specificity, and F-score of the above two methods

are listed in Table 1. With only one feature dimension, the proposed method achieved

promising results. Our proposed classification method outperformed the pixel-based method.

For the pixel-wise classification method, the result was very poor with only one feature

dimension. This indicated that even the most sensitive wavelength band didn’t perform as

well as the top tensor feature, and that feature extraction based on tensor modeling was

effective in extracting the most important information for distinguishing tumor from normal

tissue.

For each mouse, HSI dataset at two time points after tumor injection were used for

classification. In general, the classification performance was better at the second time point

than that at the first time point, probably because the spectral difference between the

cancerous and healthy tissue became more distinct as tumor grew larger. The tumor sizes at

the first time point were about half of the sizes at the second time point. For all four mice,

the average accuracy by tensor modeling achieved 83.51% at the first time point and 94.20%

at the second time point.

We also noticed that the 4th mouse gave the worst classification accuracy compared to other

mice with the tensor-modeling method. The classification performance of the 4th mouse at

the first time point was relatively poor compared to all other mice as shown in Table 1.
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Figure 5 shows the tumor detection result of the 4th mouse using the tensor modeling

method.

To further compare the mice at two different time point, quantitative analysis was performed

to compare the absorption spectra i.e. optical density of the cancerous and normal tissue.

The average absorption spectra of all the pixels within the cancerous region and the normal

region of the eight mouse data were computed and compared for two different time points.

The absorption spectra of cancer tissue differed significantly from those of normal tissue for

all the mouse data. Figure 6 shows the absorption spectra of the 4th mouse at two different

time points. The left one is at 21-day after tumor cell injection, and the right one is at the 35-

day after injection. It was found that the absorption spectra of the 4th mouse from two

different time points were very different after normalization. In particular, the spectra at the

range of 550 nm to 900 nm has larger difference between the tumor and normal tissue at the

second time points, which facilitated the classification task and gave better performance as

shown in Table 1.

4. CONCLUSIONS

Hyperspectral imaging combines both the chemical specificity of spectroscopy and the

spatial resolution of imaging. Compared to optical spectroscopy, hyperspectral imaging is

able to capture images of a large area of tissue noninvasively, without the administration of

contrast agents.

In this study, we introduced a new spatial-spectral classification framework based on tensor

modeling for hyperspectral imaging in the application of the head and neck cancer detection.

This method incorporates both spatial and spectral information of the hypercube and

performs dimensionality reduction. With the proposed classification framework, we are able

to distinguish between tumor and normal tissue in animal experiments with different tumor

sizes. Preliminary results demonstrated that the hyperspectral imaging and classification

methods are promising for head and neck cancer detection. With the proposed classification

method, we are able to distinguish between malignant tissue and healthy tissue with an

average sensitivity of 96.97% and an average specificity of 91.42% for tumor-bearing mice

one month after tumor injection. To move forward to achieve the goal of early cancer

detection, future study for differentiating between normal, pre-malignant, and malignant

cancerous tissues is planned.
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Figure 1.
Hyperspectral imaging and illustration of pixel-based Classification
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Figure 2.
Spectral-spatial representation of an HSI hypercube.
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Figure. 3.
Flowchart of the Classification Algorithm
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Figure 4.
Comparison of two classification methods with different feature dimensions
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Figure 5.
Tumor detection results with the tensor modeling method. (a) HSI composite images of a

tumor-bearing mouse. The tumor was mirrored in order to capture the whole tumor. (b) GFP

composite images that serve as the gold standard for evaluation. (c) Detection results where

green color represents the cancer pixels detected by the tensor modeling method.
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Figure 6.
Absorption spectra of cancerous and normal tissue. The left figure represents the spectra of a

mouse 21 days after tumor cell injection. The right figure represents the spectra of the same

mouse 35 days after injection.
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Table 1

Confusion Matrix

Predicted Results

Negative Positive

Gold Standard
Negative True Negative (TN) False Positive (FP)

Positive False Negative (FN) True Positive (TP)
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Lu et al. Page 18

Table 1

Comparison of Classification Performance

Mouse
ID

Days after tumor
cell injection Methods Accuracy Sensitivity Specificity F-score

1

21
Tensor Modeling 91.52% 99.82% 83.22% 0.92

Pixel-Wise 50.01% 100.00% 0.03% 0.67

26
Tensor Modeling 94.82% 96.93% 92.72% 0.95

Pixel-Wise 68.34% 63.36% 73.33% 0.67

2

21
Tensor Modeling 91.96% 90.03% 93.90% 0.92

Pixel-Wise 50.00% 100.00% 0.00% 0.67

26
Tensor Modeling 91.74% 94.77% 88.72% 0.92

Pixel-Wise 60.38% 72.04% 48.72% 0.65

3

21
Tensor Modeling 82.84% 99.37% 66.30% 0.85

Pixel-Wise 49.98% 99.96% 0.00% 0.67

35
Tensor Modeling 92.96% 99.97% 85.95% 0.93

Pixel-Wise 65.52% 69.87% 61.17% 0.67

4

21
Tensor Modeling 67.71% 35.58% 99.84% 0.52

Pixel-Wise 50.00% 100.00% 0.00% 0.67

36
Tensor Modeling 97.26% 96.22% 98.30% 0.97

Pixel-Wise 65.79% 60.15% 71.43% 0.64
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