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Abstract

Hyperspectral imaging is a developing modality for cancer detection. The rich information 

associated with hyperspectral images allow for the examination between cancerous and healthy 

tissue. This study focuses on a new method that incorporates support vector machines into a 

minimum spanning forest algorithm for differentiating cancerous tissue from normal tissue. 

Spectral information was gathered to test the algorithm. Animal experiments were performed and 

hyperspectral images were acquired from tumor-bearing mice. In vivo imaging experimental 

results demonstrate the applicability of the proposed classification method for cancer tissue 

classification on hyperspectral images.
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1. INTRODUCTION

Surgical resection of cancerous tissue is a common treatment option. There is a need for 

verification of complete cancerous tissue removal within the tumor bed during the 

procedure. The use of hyperspectral imaging may provide a non-invasive detection method 

for marginal cancerous tissue left behind following the removal of the tumor. Current 

diagnostic imaging techniques require cumbersome equipment that cannot be easily 

accessible during surgery. Hyperspectral imaging can be performed using equipment of a 

much smaller size and greater mobility.
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A hyperspectral image consists of a three-dimensional array representing a two-dimensional 

spatial image and one-dimensional spectral information. Currently used by NASA to 

differentiate between geographical features via satellite,1 this evolving imaging modality 

shows promise in medical imaging. By capturing a spectrum of light intensities over a range 

of wavelengths, a hyperspectral image provides both spectral and spatial information. 

Hyperspectral cameras detect the intensity of light within hundreds of narrow spectral bands 

for each pixel. The spectral bands provide rich information for tissue classification. Previous 

studies have demonstrated the feasibility of support vector machines (SVM) to perform 

pixel-wise classification of hyperspectral images.2 Studies have shown that support vector 

machines can be highly modified to work well with large scale data sets such as 

hyperspectral images.3 Other studies have produced effective results of combining support 

vector machines with other segmentation techniques.4 Linear support vector machines and 

new hybrid support vector selection have been shown to effectively classify hyperspectral 

images.5

Previous studies have also focused on methods of segmentation using contours of spectral 

information, but fail to perform distinctive classification of these regions.6 Minimum 

spanning forests have been shown to be an effective way of segmenting geographic 

landscapes from hyperspectral imagery.7 Two-dimensional segmentation of grayscale 

images using minimum spanning trees has been studied extensively 8 but recently it has 

been adapted to work with hyperspectral images without the need for manual marker 

selection.9

Hyperspectral imaging has also been shown to be a potential imaging modality for 

cancerous tissue identification.10 This imaging modality has also been used to aid in the 

segmentation and classification of breast cancer regions of interest,11 these studies have 

shown that the cancer spectra can be distinguished using hyperspectral imaging. This study 

focuses on expanding upon these techniques to increase accuracy by introducing a spectral-

spatial segmentation component to the spectral classification methods. The novel part of this 

study comes from the new adaptive dissimilarity measures that are calculated while the 

minimum spanning forest is being grown.

The method to be introduced relies upon SVM classification and probability data to 

determine which pixels are most likely to be classified correctly. These pixels are then 

determined through an algorithm designed by 9 to serve as markers for which spanning trees 

are grown. These trees are minimized within a minimum spanning forest to segment the 

hyperspectral image. The segments then use majority voting of the SVM classification to 

determine which value they should be given. This method is shown to increase the accuracy 

of the SVM by incorporating spatial information within the spanning forests along with the 

spectral information the SVM uses for classification.

2. METHODS

2.1 Hyperspectral Imaging System

To capture the hyperspectral image data, a CRi camera system (PerkinElmer, Hopkinton, 

MA) was used to acquire images from animals. The system is a light-tight apparatus that 
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uses a Cermax-type 300 Watt Xenon light source. This provides lights that span the 

electromagnetic spectrum from 450–950 nm. The CCD is a 16-bit, high-resolution, 

scientific-grade imaging sensor. Four, fiber-optic, adjustable illuminator arms yield an even 

light distribution to the subject. The light radiates from the excitation source and then 

illuminates the sample. Reflect lights pass through the camera lens to the solid-state liquid 

crystal tuning element and finally to the CCD. The excitation and emission filter sliders hold 

two, 50-mm diameter, long pass filters. The long pass filters remove the band light 

especially from the excitation source. These filters are color coded to indicate the 

wavelength they represent. The field of view (length × width) is from 3.4×2.5 cm to 10.2 

×7.6 cm with variable zoom. The resolution is from 25 to 75 μm based on the zoom lens 

position. The fluence rate, i.e., the flow of photons over a set angle, is from 4 to 20 mW/cm2 

based on the light position. The scan time is from 5 sec to 1 min.10 The images were then 

normalized using the method as previously reported by us.10

2.2 Hyperspectral Imaging Experiment in Animals

We used tumor-bearing mice for the HSI experiments. A head and neck tumor xenograft 

model using HNSCC cell line M4E was adopted in the experiment. The HNSCC cells 

(M4E) were maintained as a monolayer culture in Dulbecco’s modified Eagle’s medium 

(DMEM)/F12 medium (1:1) supplemented with 10% fetal bovine serum (FBS). M4E-GFP 

cells which are generated by transfection of pLVTHM vector into M4E cells were 

maintained in the same condition as M4E cells. Animal experiments were approved by the 

Animal Care and Use Committee of Emory University. Four female mice aged 4–6 weeks 

were injected with 2 × 106 M4E cells with green fluorescence protein (GFP) on the lower 

back. During the image acquisition, each mouse was anesthetized with a continuous supply 

of 2% isoflurane in oxygen. First, both the interior infrared and the white excitation were 

opened for reflectance image acquisition with 50 ms exposure time. Reflectance images 

contain 251 spectral bands from 450 to 950 nm with 2 nm increments. Then, blue excitation 

and 50 ms exposure time were selected for the fluorescence image acquisition. Tumors show 

green signals in fluorescence images due to tumor cells with GFP. In this study, we used 

GFP fluorescence images as the gold standard for the evaluation of cancer detection by HSI.

2.3 Support Vector Machine (SVM) based Classification

The proposed algorithm calls for an initial classification to be completed using a support 

vector machine. For this study a least squares SVM (LS-SVM) is proposed to conduct the 

classification.10 This SVM model has been used in previous cancer detection methods.2 The 

SVM was trained using manually selected pixels contained within the primary tumor as well 

as pixels contained within the normal tissue. This specific SVM model was then used to 

predict the classification of each pixel to detect tumor masses. The classification also 

yielded probability estimates for each classified pixel and was implemented using the 

LIBSVM 12 library following the specifications as previously described.13

2.4 Marker Selection

Markers are selected from the SVM classification and probability maps using the method as 

previously reported;9 the SVM classification map is first segmented into regions of 
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connected components. These regions are then classified as large or small based upon their 

area. The following rules taken from 9 govern marker selection for each region type:

1. In a large region, the top P% of pixels with the highest probability estimates are 

selected to be used as markers,

2. Pixels contained within small regions will only be selected as a marker if their 

probability exceeds a predetermined threshold S.

The spectrums of these markers are then averaged for each band to create a single 

characteristic spectrum Sr(sp) = (I1,…..IB) for each region type where B is the number of 

spectral bands in each pixels and I is the corresponding intensity, where sp is the set of all 

pixels p within that region type.

2.5 Region Growing Using a Minimum Spanning Forest (MSF) Approach

The proposed method has thus far created a classification map for specific markers meeting 

the above criteria. The next step involves the expanding of these classifications to the 

nearest neighbors of the markers in order to classify all pixels within the image. These 

classifications are determined by treating each marker as the root of tree and classifying 

each pixel within a minimum spanning forest.14 This forest is grown according to the prim’s 

algorithm 15 with the use of a binary heap to efficiently store the queue.

For this method dissimilarity measures between a pixel and its 8 nearest neighbors must be 

constructed. Many dissimilarity measures have been suggested for image segmentation.16 

The proposed measures in a previous work 9 consisted of a vector norm (L1), spectral angle 

mapper (SAM), and spectral information divergence (SID). For this study, the L1 and SAM 

measures were evaluated, and a vector norm taken with the first derivative (D1) was tested 

and the dissimilarity measurement with the best results was used.

The L1 dissimilarity measure is calculated between two vector pixels pi = (pi1,…,piB) and pj 

= (pj1,…,pjB) where B is the number of bands for each pixel. The L1 measure is then 

calculated by

(1)

The SAM is used to determine the spectral angle between the two pixel vectors and is 

defined as:

(2)

The D1 vector norm measure compares the difference in spectral shape instead of intensity 

as the L1 vector norm does. The D1 vector norm first converts the spectral information for 

each pixel from an intensity measurement to a measurement of the spectral shape. This 

resulting vector can then be compared using an L1 vector norm comparison and is given by:
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(3)

Previous algorithms 9 calculate these weightings for the 8 nearest neighbors and store them 

in a binary heap. The proposed algorithm calculates the dissimilarity weighting wi,j between 

a pixel’s 8 neighbors but includes the dissimilarity between the adjacent pixel pj and Sr of 

the region identifying the pixel pi. The weighting

(4)

thus provides additional grouping measurements beyond nearest neighbor dissimilarities that 

increases accuracy along spectral gradients. This additional dissimilarity comparison is 

helpful in distinguishing blurred regions as were observed.

A minimum spanning forest M is constructed from a connected graph G = T(V,E) consisting 

of a set of separated unconnected trees T = (V,E) rooted on m separated vertices ti, i = 1,

…,m, where V represents pixels within the image and E represents the associated 

dissimilarity measure between those pixels. The forest M consists of a spanning forest F 

within the set of all spanning forest SF of unconnected trees T such that the sum of the 

weights wi,j of edges E in graph M is minimal.

(5)

The algorithm implemented to construct this forest in O(|E|log|V|) time complexity is Prim’s 

Algorithm, with the edge weightings stored within a binary minimum heap.17 Each pixel is 

then classified by giving it the same value as the marker with which it was originally grown.

2.6 Majority Voting for Each Tree

The classification map was constructed under the assumption that the selected markers were 

properly classified by the SVM. Majority voting is then performed to verify these 

classifications by assigning to each pixel within a given tree T, the classification held by the 

majority of those pixels in the original SVM classification map. This has shown good results 

in previous works to increase the accuracy of the classification.1

2.7 Evaluation

Accuracy, sensitivity, specificity are commonly used performance metrics.18–26 In this 

study, we used GFP fluorescence images as the gold standard for the evaluation of cancer 

detection by HSI. Sensitivity measures the proportion of actual positives which are correctly 

identified as positive, i.e. the percentage of tumor pixels which are correctly identified as 

tumor tissue. Specificity measures the proportion of negatives which are correctly identified, 
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i.e. the percentage of healthy tissue correctly identified as not having cancer. Accuracy is 

defined as the sum of true positive and true negative divided by the total number of pixels of 

both tumor and normal tissue.

3. RESULTS

3.1 Simulation Images

This algorithm was applied to simulation images in which a primary circle was surrounded 

by smaller secondary circles representing primary and secondary tumors as seen in Figure 

3A. The intensity values for the primary circle were taken from random pixels contained 

near the center known tumor section of the mouse image. The average spectral values for the 

pixels selected for cancerous and normal tissues are shown in Figure 2.

The values at the secondary circles were taken from random pixels within an outlying region 

still contained within a known tumor section of the mouse image. The background intensity 

values on the simulation image were taken from randomly selected pixels contained within a 

healthy tissue section of the same mouse image. The simulation image was implemented to 

test the algorithm. The simulation was run based on four separate mouse images and the 

results are shown below. As shown in Figure 3A, the central and secondary circles are 

almost invisible on the simulation image. The classification algorithhm was still able to 

segment the circles and achieved a high accuracy of more than 97%.

3.2 Spectral Band and Dissimilarity Measure Selection

Figure 4 shows the spectra of normal and cancer tissue, which were used to decide the 

appropriate selection of spectral bands to segment cancerous tissue from normal tissue. 

From these spectra it was seen that the range of 550 to 850 was a region of great 

dissimilarity that could be used to distinguish these tissue types. It was noted that while the 

intensities were different the spectral shape was of no great distinction; therefore the choice 

to use the L1 and L2 methods over the SAM or D1 dissimilarity measures was made.

3.3 Mouse Image Data

The classification algorithm was also applied to the in vivo hyperspectral images that were 

acquired from tumor-bearing mice. Figure 5 shows an example of the hyperspectral images 

and the classification results. The method was able to detect the tumor region. As shown in 

Table 2, the quantitative assessment of the classification method is accurate for detecting the 

tumor in four animals.

As seen in Figure 6 the greatest challenge in segmenting the tumor is on the shadowed 

boundaries. From Figure 6.D it is seen that the misclassified regions are along the 

boundaries that are not only changes in tissue type but also in elevation. The gradient shift 

along the elevation of the tumor region could have effects on the spectra leading to errors.

4. DISCUSSION

To the best of our knowledge this is the first time the minimum spanning forest approach 

has been applied to classify cancerous tissue in hyperspectral images. The algorithm allows 

Pike et al. Page 6

Proc SPIE. Author manuscript; available in PMC 2014 November 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



for the improved dissimilarity measure to be introduced emphasizing the spectral 

information of select tissue types while including the spatial information in the minimum 

spanning forest approach. The challenges in this imaging modality and segmentation are 

finding the specific bands that are best used for image classification. The minimum spanning 

forest approach can be computationally intensive and the implementation may need to be 

optimized in order to perform rapid, quantitative evaluation of many different spectral 

regions.

In this study the cancerous tissue was only present under a thin layer of skin. This layer may 

have acted as a barrier, shielding spectral information that can be used to better classify 

different types of tissue. This method demonstrates that even through this skin barrier the 

dissimilarity measure was still able to distinguish the cancerous from normal tissue with a 

high accuracy and provide useful boundaries for cancer detection.

5. CONCLUSIONS AND FURTHER STUDIES

The minimum spanning forest algorithm combined with the support vector machine is able 

to more accurately classify cancerous tissues compared to the previous region growing 

algorithms or support vector machines alone. The hyperspectral imaging modality may 

provide the necessary verification that surgeons need when accessing the surrounding tumor 

bed for cancerous tissue. Further studies will examine the ability for this algorithm to 

classify hyperspectral images in which the tumor bed is fully exposed unlike the images 

above which required the light to penetrate the skin. Higher wavelengths should also be 

captured as greater cancer discrimination has been observed in the infrared and far infrared 

regions. Further work will include the incorporation of multiple dissimilarity measures to 

obtain a spectral shape and intensity dissimilarity measurement.

Furthermore, the adaptive dissimilarity measure explored in this study will be further 

investigated. In this study the dissimilarity was measured against the marker roots of which 

class it was attempting to join, further studies will examine the measurement of a pixel not 

only to its neighbors, but include all pixels included in the branches from which its 

neighbors are joined. This may provide greater segmentation accuracy along slow moving 

gradients and better distinguish blurred boundaries.

Acknowledgments

This research is supported in part by NIH grants (R01CA156775, R21CA176684, and P50CA128301) and Georgia 
Cancer Coalition Distinguished Clinicians and Scientists Award.

References

1. Tarabalka Y, Chanussot J, Benediktsson JA. Segmentation and classification of hyperspectral 
images using watershed transformation. Pattern Recognition. 2010; 43(7):2367–2379.

2. Akbari H, Halig LV, Schuster DM, Osunkoya AO, Master VA, Nieh PT, Chen GZ, Fei B. 
Hyperspectral imaging and quantitative analysis for prostate cancer detection. J Biomedical Optics. 
2012; 17:076005.

3. Li XR, Zhu JE, Wang J, Zhao LY. Hyperspectral image classification based on compsite kernels 
support vector machine. Journal of Zhejiang University (Engineering Science). 2013; 47(8):1403–
1410.

Pike et al. Page 7

Proc SPIE. Author manuscript; available in PMC 2014 November 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4. Priego B, Souto D, Bellas F, Duro RJ. Hyperspectral image segmentation through evolved cellular 
automata. Pattern Recognition Letters. 2013; 34(14):1648–1658.

5. Kaya GT. A Hybrid Model for Classification of Remote Sensing Images With Linear SVM and 
Support Vector Selection and Adaptation. IEEE J Selected Topics in Applied Earth Observations & 
Remote Sensing. 2013; 6(4):1988–1997.

6. de la Vega SH, Manian V. Object segmentation in hyperspectral images using active contours and 
graph cuts. International Journal of Remote Sensing. 2012; 33(24):1246–1263.

7. Bernard K, Tarabalka Y, Angulo J, Chanussot J, Benediktsson JA. Spectral–Spatial Classification of 
Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach. IEEE Transactions 
on Image Processing. 2012; 21(4):2008–2021. [PubMed: 22086502] 

8. Xu Y, Uberbacher EC. 2D image segmentation using minimum spanning trees. Image and Vision 
Computing. 1997; 15(1):47–57.

9. Tarabalka Y, Chanussot J, Benediktsson JA. Segmentation and Classification of Hyperspectral 
Images Using Minimum Spanning Forest Grown From Automatically Selected Markers. IEEE 
Trans Syst Man Cybern Part B-Cybern. 2010; 40(5):1267–1279.

10. Fei, B.; Akbari, H.; Halig, LV. Hyperspectral imaging and spectral-spatial classification for cancer 
detection. The 5th IEEE International Congress on Image and Signal Processing (CISP 2012) and 
the 5th International Conference on BioMedical Engineering and Informatics (BMEI 2012); 2012. 
p. 62-64.

11. Kim, B.; Kehtarnavaz, N.; LeBoulluec, P.; Liu, H.; Peng, Y.; Euhus, D. Automation of ROI 
extraction in hyperspectral breast images. 35th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC); 2013. p. 3658-3661.

12. Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM Trans Intell Syst 
Technol. 2011; 2(3):1–27.

13. Lv, G.; Yan, G.; Wang, Z. Bleeding detection in wireless capsule endoscopy images based on color 
invariants and spatial pyramids using support vector machines. Engineering in Medicine and 
Biology Society, EMBC, 2011 Annual International Conference of the IEEE; 2011. p. 6643-6646.

14. Stawiaski, J. PhD dissertation. Paris School Mines; Paris, France: 2008. Mathematical morphology 
and graphs: Application to interactive medical image segmentation. 

15. Prim RC. Shortest connection networks and some generalizations. Bell System Technical Journal. 
1957; 36(6):1389–1401.

16. Makrogiannis S, Economou G, Fotopoulos S. A region dissimilarity relation that combines feature-
space and spatial information for color image segmentation. IEEE Trans Syst Man Cybern Part B-
Cybern. 2005; 35(1):44–53.

17. Cormen, TH.; Leiserson, CE.; Rivest, RL.; Stein, C. Intro to Algorithms. MIT Press; 2009. 

18. Qin X, Cong Z, Fei B. Automatic segmentation of right ventricular ultrasound images using sparse 
matrix transform and a level set. Phys Med Biol. 2013; 58(21):7609–24. [PubMed: 24107618] 

19. Yang X, Fei B. Multiscale segmentation of the skull in MR images for MRI-based attenuation 
correction of combined MR/PET. J Am Med Inform Assoc. 2013; 20(6):1037–45. [PubMed: 
23761683] 

20. Wang H, Fei B. Nonrigid point registration for 2D curves and 3D surfaces and its various 
applications. Phys Med Biol. 2013; 58(12):4315–30. [PubMed: 23732538] 

21. Fei B, Yang X, Nye JA, Aarsvold JN, Raghunath N, Cervo M, Stark R, Meltzer CC, Votaw JR. 
MR PET quantification tools: registration, segmentation, classification, and MR-based attenuation 
correction. Med Phys. 2012; 39(10):6443–54. [PubMed: 23039679] 

22. Yang X, Wu S, Sechopoulos I, Fei B. Cupping artifact correction and automated classification for 
high-resolution dedicated breast CT images. Med Phys. 2012; 39(10):6397–406. [PubMed: 
23039675] 

23. Akbari H, Fei B. 3D ultrasound image segmentation using wavelet support vector machines. Med 
Phys. 2012; 39(6):2972–84. [PubMed: 22755682] 

24. Yang X, Fei B. A multiscale and multiblock fuzzy C-means classification method for brain MR 
images. Med Phys. 2011; 38(6):2879–91. [PubMed: 21815363] 

25. Wang H, Fei B. A modified fuzzy C-means classification method using a multiscale diffusion 
filtering scheme. Med Image Anal. 2009; 13(2):193–202. [PubMed: 18684658] 

Pike et al. Page 8

Proc SPIE. Author manuscript; available in PMC 2014 November 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



26. Lu G, Fei B. Medical hyperspectral imaging: a review. Journal of Biomedical Optics. 2014; 19 (In 
Press). 

Pike et al. Page 9

Proc SPIE. Author manuscript; available in PMC 2014 November 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Algorithm flow chart showing the progression from a normalized hyperspectral image being 

first classified spectrally by a support vector machine and then being further classified 

spatially using a minimum spanning forest.
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Figure 2. 
Average spectral values for pixels contained within the cancer and normal regions for the 

simulation (left) and for in vivo mouse images (right).
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Figure 3. 
Classification results of the simulation image (A) compared to the gold standard (B), the 

results using the L1 method (C) and the L2 method (D).
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Figure 4. 
Typical spectral intensities of normal and cancer tissue. Gold-standard data from green 

fluorescence protein (GFP) imaging were used to separate cancerous and normal tissue. The 

average intensity values were used across all pixels of each tissue type.
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Figure 5. 
Classification results of the mouse image (A) compared to the gold standard data (B), and 

the results using the L1 method (C) and the L2 method (D).
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Figure 6. 
Classification results of the mouse image (A) compared to the gold standard (B) using the 

L2 method (C) with the difference image (D)
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Table 1

Results from the simulation images using the SVM, L1 and L2 methods

SVM L1 L2

Sensitivity (%) 95.9 ± 1.6 95.3 ± 2.1 97.8 ± 0.6

Specificity (%) 92.4 ± 4.9 97.2 ± 0.7 96.9 ± 0.4

Accuracy (%) 93.3 ± 3.8 96.7 ± 0.2 97.2 ± 0.1
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Table 2

Results from the mouse images using the SVM, L1 and L2 methods

SVM L1 L2

Sensitivity (%) 89.9 ± 1.9 90.7 ± 2.6 93.6 ± 2.4

Specificity (%) 97.1 ± 2.2 98.0 ± 2.3 98.0 ± 2.2

Accuracy (%) 94.1 ± 0.6 95.3 ± 0.9 96.0 ± 0.8
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