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Abstract

Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality 

proposed to decrease the effect of tissue superposition present in mammography, potentially 

resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. 

Tissue classification in DBT images can be useful in risk assessment, computer-aided detection 

and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a 

challenging problem because DBT images include complicated structures, image noise, and out-

of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an 

automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are 

pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a 

global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures 

and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by 

fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. 

Finally, each region is classified into different tissue types based on both intensity and texture 

features. The proposed method is validated using five patient DBT images using manual 

segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to 

evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed 

method for classifying breast glandular and fat tissue on DBT images.
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1. INTRODUCTION

Mammography is a routine imaging modality for breast cancer detection, which can 

effectively reduce mortality from the disease. However, mammography only provides two-

dimensional (2D) projection images of a three-dimensional (3D) object, resulting in breast 

tissue superposition, which leads to missed cancers and false positives. Digital breast 

tomosynthesis (DBT), which is a 3D x-ray imaging modality, was proposed to decrease 

tissue superposition in mammography, resulting in an increase in detection and diagnostic 

accuracy [1, 2]. Classifying different breast tissue in DBT images may have a positive 

impact on mass tissue detection, radiation dose estimation, and cancer risk assessment [3–

12]. Although DBT is superior to mammography in term of 3D information, automated 

tissue classification of DBT images is still a challenging problem due to the low vertical 

resolution and presence of out-of-plane artifacts due to its limited angular tomographic 

imaging [13, 14].

The classification method based on DBT images was started by Kontos et al. [9]. They 

investigated 2D and 3D texture features (e.g., skewness, coarseness, etc.) in different tissue 

regions and found that these texture features were useful for the classification purpose. 

Another effort was made by Vedantham et al. on the pre-processing before intensity based 

classification in DBT images [12]. Because of the existence of out-of-plain artifacts and 

image noise, a 3 dimensional anisotropic filter was introduced to improve the image quality 

[5]. In this project, we propose an automatic DBT classification method that can classify 

both adipose and glandular tissue in DBT images based on L0 gradient minimization [15] 

and a fuzzy C-means algorithm. The accuracy of this proposed classification method was 

validated using five patient images using manual segmentation as the gold standard.

2. MATERIALS AND METHODS

The main problem in classifying different tissue types from DBT images is that there are 

severe artifacts caused by its limited angle reconstruction. Another issue is the complicated 

patterns in which the glandular tissue is distributed, which makes it harder to classify it just 

based on the intensity. Thus, our proposed method will focus on solving both problems on 

patient data. Thus, the algorithm was developed and tested using five patient DBT images, 

acquired with a clinical tomosynthesis machine (Selenia Dimensions, Hologic, Inc) for an 

ongoing IRB-approved clinical trial. The patients released these images for further research 

upon anonymization.

2.1 Overview of the proposed pre-processing and classification method

Tomosynthesis images are usually affected by noise and also by substantial out-of-plane 

artifacts, making it difficult to identify breast tissues from tomosynthesis images. Thus, in 

order to tackle the presence of artifacts before image classification, DBT images are pre-

processed by different filters. After pre-processing, the processed images contain different 

tubular structures and other small discontinuous regions, which are shown bright in the 

images. To address this problem, a global smoothing filter based on L0 gradient 

minimization is applied to eliminate detailed structures and to enhance large-scale ones in 

the images. The smoothed images are divided into different regions and are labeled based on 
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their intensity similarity. The average intensity and texture features for each labeled region 

are calculated. Finally, a fuzzy C-means algorithm is used to classify these labeled regions 

into different tissue types based on those calculated features. The flowchart of the whole 

procedure is shown in Figure 1.

2.2 Pre-processing

Nonlinear filters have the ability of preserving the edges during denoising [16]. Three 

different filters are used to increase image quality. First, an angular constrained bilateral 

filter (ACBL) is applied to reduce the out-of-slice artifacts caused by the limited angle 

imaging [12]. A general bilateral filter is a weighted average of the local neighborhood 

samples. It is a is non-linear, edge-preserving and noise-reducing smoothing filter, whose 

weights are computed based on both spatial and intensity histogram distances between the 

center sample and the neighboring samples [17]. Usually, the weights are set as Gaussian 

distributions. The bilateral filter can both preserve sharp edges and remove the noise in the 

image. For a given image I, its intensity at point x is I(x), then its corresponding filtered 

results is defined as:

(1)

where IBL is the filtered image, Ω is the window centered in x, fr is the range kernel for 

smoothing differences in intensities, and gs is the spatial kernel for smoothing differences in 

coordinates. Both smoothing kernel applied here are following Gaussian distributions.

In order to decrease the angular based artifacts, according to the imaging angular range, this 

filter is modified as an angular constrained bilateral filter in the x-z plane, i.e. parallel to the 

X-ray projection direction, which can reduce the “X” shaped out-of-slice artifacts in the x-z 

plane. In our project, the angular range is from −7.5° to 7.5°.

Second, cupping artifacts needs to be corrected before classification. The intensity values in 

the center of the reconstructed breast are lower than those at the margins in the reconstructed 

image. This cupping artifact should be considered in the x-y plane, i.e. vertical to the X-ray 

projection direction. This artifact will affect the classification accuracy when an intensity 

based classification method is used. To reduce the cupping artifact, we applied a bias 

correction (BC) method that was previously used for breast CT image classification [18].

After the bias correction, the intensity histogram of the processed DBT images is adjusted 

by the constrained limited adaptive histogram equalization (CLAHE) [19]. This method can 

enhance the details as well as the local contrast in the corrected images. In order to reduce 

image noise while maintaining edge sharpness as much as possible, a bilateral filter (BL) is 

utilized to remove the noise in the x-y plane.

2.3 Classification

After the pre-processing step, the DBT images have been enhanced for breast tissue 

classification. A breast mask and morphologic operation segments the whole breast and the 

skin regions. Then, the classification focuses on the glandular and fat tissue in the whole 

breast region within the skin. Being different from those methods that utilize the intensity 
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similarity for the segmentation of different tissue regions [20–23], the criteria for the 

classification here is mainly based on the fact that the texture features of different tissues are 

different, as shown in Figure 2.

L0 Gradient Filter—The breast tube structures in DBT images can be complicated and 

lead to inaccurate classification. We utilize an L0 gradient filter to eliminate detailed 

structures and to enhance large-scale ones in the images [15]. The filter is a global smooth 

filter based on L0 gradient minimization. Here, we suppose that I is the input image to be 

filtered by the L0 gradient filter and S be the filtered result. The intensity gradient at point p 

is ∇Sp = (∂xSp, ∂y,Sp), which is calculated from the intensity differences along both x and y 

directions. Then, a global gradient measurement function, as shown below, is used to 

process the image.

(2)

This function is designed to calculate the number of gradients around the whole image. Here 

#{} is the counting operator to calculate the number of p that has non-zero gradient, which is 

the L0 norm of gradient. This counting function only considers the number of non-zero 

gradients rather than the magnitudes of the gradients. Based on the measurement function 

C(S), the output image S is filtered by optimizing the following function:

(3)

where α is the weight parameter to control the significance of the global gradient 

measurement function C(S), and the term Σp(Sp − Ip)2 constrains the similarity of the image 

intensity. In order to solve this function to acquire the minimum result of the function (3), a 

special alternating optimization strategy with half quadratic splitting is applied here, which 

is based on the idea of introducing auxiliary variables to iteratively expand and update the 

original terms.

This L0 gradient filter can further denoise the image in order to make it smoother. At the 

same time, the global smoothness ability of the filter can merge the points as one region with 

similar intensity. Therefore, different regions can be extracted and labeled from the gradient 

filtered images using a fuzzy C-means (FCM) algorithm [24, 25].

Texture feature extraction and tissue classification—Texture feature has been 

proven useful for tissue classification in DBT images [8, 9]. We calculate 8 texture features: 

skewness, contrast, correlation, entropy, sum entropy, difference entropy, sum of variances, 

information measures of correlation, and the mean intensity of each region. These are all 

calculated from the images after pre-processing and before L0 gradient filtering. Based on 

the texture features and mean intensity for each labeled region, FCM is applied to classify 

the breast into two groups: adipose and glandular tissue.
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2.4 Evaluation

Quantitative evaluations are usually conducted by comparing the automatic results with the 

corresponding manual segmentation results [26–38]. In this project, the manual 

segmentation was performed without knowledge of the automatic segmentation results using 

a commercial software Analyze (AnalyzeDirect Inc., Overland Park, KS). The Dice score is 

used as the metric to assess the classification performance. It is computed as follows:

(4)

where S and G represent the pixel set of the classified regions obtained by the proposed 

algorithm and by the gold standard, respectively.

For further analysis, we set glandular tissue as positive and adipose tissue as negative. Then 

a confusion table is created with two rows and two columns presenting the number of voxels 

of True Negatives (TN), False Positives (FP), False Negatives (FN), and True Positives (TP) 

for predictive analytics [39]. Compared with the gold standard, TN means that adipose tissue 

is correctly classified as adipose; FP means that adipose tissue is falsely classified as 

glandular; FN means that glandular tissue is falsely classified as adipose; and TP means that 

glandular tissue is correctly classified as glandular. The confusion table of the classification 

is calculated as

(5)

(6)

(7)

3. RESULTS

3.1 Pre-processing results

Figure 3 shows the pre-processed images of one patient case. After the pre-processing, the 

artifacts and noise in Figure 3(a) were reduced and the detailed structures in the breast were 

enhanced (Figure 3(d)).

Moreover, the intensities of the DBT image before and after pre-processing were compared 

with profiles, as shown in Figure 4. It can be seen from Figure 4(b) that the intensity of the 

processed image was smoother and its dynamic range was increased comparing with the 

original image in Figure 4(d).

3.2 Classification results

Figure 5 shows the processed and classified results. The preprocessed images, as shown in 

Figure 3(d), are smoothed by the L0 gradient filter, as shown in Figure 5 (a). Then the 

filtered image was labeled into 20 regions by a fuzzy C-means classification method (Figure 

Qin et al. Page 5

Proc SPIE. Author manuscript; available in PMC 2014 November 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



5 (b)). After that, the labeled images were classified into 2 regions based on their texture 

features. The final results and their comparison with gold standard were shown in Figure 5 

(c) and Figure 5 (d), respectively.

3.3 Evaluations of five patient data

Based on the proposed method, the classified results of five patients were analyzed. The 

evaluation results including the Dice score, sensitivity, specificity, and accuracy for both 

glandular and adipose tissue were calculated, as shown in Table 1.

4. CONCLUSIONS

We proposed a pre-processing and classification method utilizing global gradient 

minimization and texture features for digital breast tomosynthesis images. Preliminary 

results on five patients demonstrate the feasibility of the proposed method for classifying 

glandular and adipose tissue of the breast on tomosynthesis images.
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Figure 1. 
Flowchart of the DBT classification procedure.
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Figure 2. 
Different tissue regions from a DBT image (a). (b) The adipose tissue region. (c) The 

glandular tissue region. The texture features, contrast, and homogeneity are different at the 

two different regions.
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Figure 3. 
The pre-processing results of the DBT image. (a) Original image. (b) Result after the out-of-

plane and cupping artifact corrections. (c) Results after the constrained local histogram 

equalization. (d) Denoising results after bilateral filtering.
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Figure 4. 
The comparison of the image intensities between the original image (a) and the pre-

processed image (c). (b) An intensity profile of a horizontal profile on the original image; 

(d) The same horizontal profile of the pre-preprocessed image (c).
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Figure 5. 
Classification results. (a) Smoothed results of Figure 2(d) by the L0 gradient filter. (b) 

Labeled regions of (a). (c) Classified results based on the texture features in the labeled 

regions in (b), where the white region is the glandular tissue, the grey one is the adipose 

tissue, and the outer thin region is the skin. (d) Comparison between classified results and 

the gold standard, where white regions are the agreed regions and the gray are the errors.
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