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Abbreviations and
Acronyms

T2W
T2-weighted

ADC
apparent diffusion coefficient

DCE
dynamic contrast-enhanced

MRS
magnetic resonance

spectroscopy

DWI
diffusion-weighted imaging

SVM
support vector machine

AUC
area under a receiver

operating characteristic curve

TZ
transition zone

PZ
peripheral zone

One in six men will develop prostate cancer in his lifetime. Early detection and accurate diagnosis of
the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate
cancer has greatly advanced since the introduction of multiparametric magnetic resonance imaging
(mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences includ-
ing dynamic contrast-enhanced MRI, diffusion-weighted MRI, and magnetic resonance spectroscopy
imaging. Because of the big data and variations in imaging sequences, detection can be affected by
multiple factors such as observer variability and visibility and complexity of the lesions. To improve
quantitative assessment of the disease, various computer-aided detection systems have been de-
signed to help radiologists in their clinical practice. This review paper presents an overview of literatures
on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its
applications. The aim of the survey is threefold: an introduction for those new to the field, an over-
view for those working in the field, and a reference for those searching for literature on a specific
application.
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INTRODUCTION

P rostate cancer (PCa) is currently the most common
cancer in men and the second leading cause of cancer-
related deaths among men in the United States (1).

In 2015, it is estimated that the number of estimated new cases
and deaths will be 220,800 and 27,540, respectively,

accounting for 26.0% of new cancer cases and 8.8% of cancer
deaths for American men (1).

The prostate is subdivided into the base, mid-gland, and
apex from superior to inferior. The prostate also has four an-
atomic zones: the transition zone (TZ), which contains 5%
of the glandular tissue and accounts for around 25% of PCa;
the central zone, which contains 20% of the glandular tissue
and accounts for around 5% of PCa; the peripheral zone (PZ),
which contains 70–80% of the glandular tissue and accounts
for about 70% of PCa; and the non-glandular anterior fibro-
muscular stroma. Accurate localization of PCa within the TZ
or the PZ is extremely important as TZ PCa is associated with
favorable pathologic features and better recurrence-free sur-
vival (2).

At present, the clinical standard for definitive diagnosis of
PCa is transrectal ultrasound (TRUS)-guided sextant or sys-
tematic biopsy. The prostate-specific antigen (PSA) blood test
and digital rectal examination (DRE) results are considered
to identify patients who need biopsy. The actual impact of
magnetic resonance imaging (MRI) for PCa management is
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through guided biopsies and improved cancer diagnosis and
staging yield. In recent years, MRI-targeted prostate biop-
sies have been showing better disease localization and more
accurate sampling than conventional TRUS-guided biopsy
in various studies (3–6). MRI-based computer-assisted so-
phisticated imaging for individual patients would offer such
a significant role in defining an optimal targeted biopsy and
interventional approach. Several approaches have been ex-
plored to improve the accuracy of image-guided targeted
prostate biopsy, including in-bore MRI-guided, cognitive
fusion, and MRI/TRUS fusion-guided biopsy (7).

MRI provides excellent soft-tissue contrast and has become
an imaging modality of choice for localization of prostate
tumors. Multiparametric MRI (mp-MRI) includes high-
resolution T2-weighted (T2W) MRI, diffusion-weighted
imaging (DWI), dynamic contrast-enhanced imaging (DCE-
MR), and MR spectroscopy (MRS). The mp-MRI has proven
to be an effective technique to localize high-risk PCa (8,9).
The combined use of anatomic and functional information
provided by the multiparametric approach increases the ac-
curacy of MRI in detecting and staging PCa (8,9). It can also
help guide biopsies to achieve a higher tumor detection rate
and better reflect the true Gleason grade. The European Society
of Urogenital Radiology in 2012 established the Prostate
Imaging Reporting and Data System (PI-RADS) scoring system
for mp-MRI of the prostate (10). The MR PI-RADS aims
to enable consistent interpretation, communication, and re-
porting of prostate mp-MRI findings (10,11). A joint steering
committee formed by the American College of Radiology,
European Society of Urogenital Radiology, and the AdMeTech
Foundation has recently announced an updated version of the
proposals of PI-RADS Version 2 (12). Prostate mp-MRI at
3 T had been recommended in PI-RADS Version 2. Gen-
erally, computer-aided detection (CAD) systems are classified
into two categories: CAD and computer-aided diagnosis
(CADx) systems. Currently, most CAD systems in prostate
MRI focus on local suspicious lesions and discrimination
between benign and malignant lesions; most of them are CADx
systems. As the combination of various MR images creates
large amounts of data, supportive techniques or tools, such
as CADx, are needed to make a clinical decision in a fast,
effective, and reliable way.

In the past 10 years, computer-aided techniques have de-
veloped rapidly. Automated CAD and diagnosis may help
improve diagnostic accuracy of PCa, and reduce interpreta-
tion variation between and within observers (13,14). PCa
diagnosis requires an experienced radiologist to read pros-
tate MRI, and such expertise is not widely available. Addition
of CADx may significantly improve the performance of less-
experienced observers in PCa diagnosis. When less-experienced
observers used CADx, they had a similar performance as those
experienced observers in distinguishing benign from malig-
nant lesions (13). In a more recent study, the use of CAD
can also improve prostate mp-MRI study interpretation in
experienced readers (15). For cases in which radiologists are
less confident, they can get higher performance by using the

computer output. A recent study showed that a pattern rec-
ognition system enables radiologists to have a lower variability
in diagnosis, decreases false-negative rates, and reduces the time
to recognize and delineate structures in the prostate (16). The
benefit of CADx also includes guiding biopsy using cancer
location information from MRI (14). Therefore, along with
rapid development of MR technique, CADx of PCa has
become an active field of research in the last 5 years.

This paper starts with the review of MR image acquisi-
tion technology and then focuses on a comprehensive review
of the state-of-the-art image quantification methods. The part
on validation and clinical applications is a reference of the lit-
eratures available in the clinical management of the disease.
The paper closes with a discussion and future perspectives.

A PubMed electronic database search for the terms
“computer-aided,” “CAD,” “prostate,” and “MRI” was com-
pleted for articles about CAD of PCa up to September 11,
2015.

MR IMAGE ACQUISITIONS

Contemporary MRI of the prostate combines anatomic images
from high-resolution T1-weighted and T2W sequences and
functional information obtained from DWI, DCEI, and MRS.
The combination of conventional anatomic and functional MRI
is known as mp-MRI. The PI-RADS Prostate MR Guide-
lines published in 2012 suggest the use of T2W images plus
two functional techniques (10). The anatomy of the pros-
tate gland is visualized with T2W images; DWI and MRS
add specificity to lesion characterization, whereas DCE-
MRI has a high sensitivity in cancer detection. In PI-
RADS v2, the essential components of the mp-MRI prostate
examination are T2W, DWI, and DCE (12). For the PZ, DWI
is the primary determining sequence. For the TZ, T2W is
the primary determining sequence. To obtain high and stable
accuracy, a combination of anatomic and functional imaging
is necessary in clinical practice. Recent studies showed an in-
creasing interest in developing CADx systems to detect and
characterize PCa on the basis of an mp-MRI approach
(14,15,17,18). T2W-MR images are frequently used in mp-
MRI CADx systems. T2W plus DWI and DCE-MRI are
also commonly used among the combinations.

T2WI and T2 Mapping

The anatomy of the prostate gland is best visualized with T2W
images. The acquisition of high-resolution T2W images of
the prostate is the first and most important step in an mp-
MRI protocol. In T2W images, the PZ of the prostate has
hyperintense signal, whereas the central zone and TZ have
low signal, allowing the zonal anatomy of the prostate to be
clearly delineated (Fig 1). In T2W images (Fig 2), PCa in the
PZ is usually depicted as a low-signal area. However, the
growth pattern and the aggressiveness of the tumor can alter
its appearance. T2W-MRI has been advocated as an accu-
rate technique in the detection of PCa in the TZ (19,20).
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The value of T2W-MR images is also in predicting patho-
logic stage and extracapsular extension of PCa (21).

Because T2W-MR images play an important role in both
location and staging of PCa, T2W-MRI is the most fre-
quently used sequence in CADx systems for PCa. In T2W-
MR images, the tumor region of interest (ROI) has more
dark pixels than bright pixels, whereas the normal tissue ROI
has more bright pixels than dark pixels. Different features, in-
cluding fractal features, textural features, and signal intensity,
can be used by CADx. Because PCa at the central gland and
PZ usually have significantly different texture on T2W-MR
images (22), and because the use of mp-MRI may have chal-
lenges for detecting cancer at the TZ (23), a CADx system
that can analyze features based on the lesion’s location may
be able to aid in the detection of suspicious lesions.

T2 maps offer quantitative T2 values. As the standard T2
mapping approach of performing multiple single spin-echo
acquisitions with a range of echo time (TE) settings requires
excessive scan times, the T2 mapping is not included in most
clinical applications. Recently, some new sequences can provide
an effective approach to speed up T2 quantification (24-26).
T2 values of histologically proven malignant tumor areas were
significantly lower than the suspicious but nonmalignant lesions
or normal areas (24). The use of quantitative T2 measure-
ment improves the specificity and/or sensitivity of PCa
detection (27) and aggressiveness assessment (28,29). There
is a potential benefit of incorporating quantitative T2 values
into CADx systems.

DCE-MRI

DCE-MRI, which enables visualization of vascular perme-
ability and perfusion, is an important tool in oncology to define

tumor. DCE-MRI is sensitive to alterations in vascular per-
meability, extracellular space, and blood flow. The clinical
application of DCE-MRI for PCa is based on data showing
that malignant lesions show earlier and faster enhancement
and earlier contrast agent washout compared to healthy pros-
tate tissues (Fig 3) (30).

The DCE-MRI data can be analyzed with various
semiquantitative or quantitative models to extract param-
eters related to vascular permeability, extracellular space, blood
flow, and water exchange (31). As semiquantitative DCE-
MRI data are relative only to the patient, the baseline intensity
is highly variable depending on the patient and the MRI pro-
tocol. It is necessary to use indicators relating to signal amplitude.
The most commonly used quantitative approach of analyz-
ing DCE-MRI is two-compartment pharmacokinetic (PK)
models that can be used to generate PK parameters such as
Ktrans (transfer of gadolinium contrast from the vasculature to
the tumor, representing forward vascular perfusion and per-
meability) and Kep (reverse transfer of contrast agent from the
extracellular space back to the plasma, representing back-
ward leakage) to quantify tumor enhancement and the contrast
uptake and washout (32). However, PK model implemen-
tation typically involves assuming some prior knowledge, and
the arterial input function estimation methodology can have
significant effects on the parameters estimated by PK mod-
eling (33). The empirical approach based on phenomenological
universalities is able to reproduce experimental data from a
DCE-MRI acquisition (34,35).

Different CADx systems have been developed to analyze
the DCE-MRI data. Vos et al. developed a CADx system
capable of discriminating PCa from nonmalignant disorders
in the PZ and achieved a diagnostic accuracy of 0.83 (0.75–
0.92) (36). They also developed an automated segmentation
per patient calibration method to improve the diagnostic ac-
curacy of CADx (37). Puech et al. designed a prostate CADx
software to provide a five-level cancer suspicion score for sus-
picious foci detected in DCE-MRI and T1-weighted images
(38,39).

DCE-MRI usually has lower spatial resolution than other
sequences, especially when DCE-MRI is performed rapidly
in a short period of time. Limitations in the interpretation of
DCE-MRI data include overlap in enhancement properties
between benign and malignant regions in the TZ. Benign pros-
tatic hyperplasia and other benign inflammatory conditions
within the TZ also exhibit substantial hypervascularity (40).
Diagnostic models containing contrast-enhancement param-
eters have reduced performance when applied across zones,
so zone-specific models can improve classification of PCa on
mp-MRI (41).

Diffusion-weighted MRI

The diffusion properties of tissue are related to the amount
of interstitial free water and permeability. In general, cancer
tends to have more restricted diffusion than normal tissue,
because of the higher cell densities and abundance of

Figure 1. High-resolution T2-weighted magnetic resonance imaging
(MRI). T2-weighted MR images can differentiate the normal
intermediate- to high-signal-intensity peripheral zone (region 1) from
the low-signal-intensity central and transition zones (region 2).
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intra- and intercellular membranes in cancer (42). Diffusion-
weighted MRI images can be used to detect PCa from
differences in the diffusion of water molecules of the normal
and tumor tissues (Fig 4) (42). The DWI is usually generated
with different b-values that can be used to calculate the ap-
parent diffusion coefficient (ADC), and the ADC for each
pixel of the image is displayed as an ADC map. Diffusion of
water molecules in tumor tissue is thought to reflect tissue
architecture such as cell density and nucleus-to-cytoplasm ratio,
and reductions in ADC values. For these reasons, ADC values
have received the attention as a predictor of Gleason score
in PCa (43,44). Studies show that DWI findings may indi-
cate tumor aggressiveness (27,45,46).

Technologic advances enable performance of DWI at high
b- or ultrahigh b-values (greater than 1000 s/mm2). High
b-value images can be obtained in one of two ways: either

directly by acquiring a high b-value DWI sequence, or by
calculating (synthesizing) the high b-value image by extrap-
olation from the acquired lower b-value data. Previous research
has shown that high b-value DWI images allow for in-
creased delineation between tumors and healthy tissue, which
makes the PCa detection more robust (47,48). Whereas con-
trast in ADC maps does not significantly change with different
b-values, contrast ratios of DWI images are significantly higher
at b-values of 1500 and 2000 s/mm2 in comparison to b-values
of 800 and 1000 s/mm2 (49). Wang et al. have reported that
DWI images and ADC maps using b = 1500 s/mm2 should
be considered more effective than those at b = 2000 s/mm2

or b = 1000 s/mm2 for detecting PCa at 3 T MRI (50).
DWI images and ADC maps are the key component of

the prostate mp-MRI examination. Several CADx systems
adopting DWI images or ADC maps have been developed.

Figure 2. High-resolution T2-weighted
magnetic resonance (MR) images of pros-
tate cancer. (a) There is a low-signal
intensity lesion on the right peripheral zone
(white arrows) at the mid-gland of the pros-
tate. At prostatectomy, the lesion was
classified as a Gleason grade 7 (4 + 3) pros-
tate adenocarcinoma. (b) An ill-defined
homogeneous low-signal-intensity area at
the left transition zone (white arrows) at mid-
gland of the prostate in another patient.
Transrectal ultrasound (TRUS)-guided
biopsy showed a Gleason grade 8 (4 + 4)
prostate adenocarcinoma on the corre-
sponding position (images from Reference
(53)).

Figure 3. Dynamic contrast-enhanced magnetic resonance imaging (MRI) (dynamic contrast-enhanced imaging [DCE-MRI]) of the pros-
tate. (a) Axial T1 gradient echo (GRE) sequence unenhanced image. After contrast agent administration, an area with early enhancement is
seen on the right in the peripheral zone (b), region of interest [ROI1]) with significant washout in the late-phase image (c). The curve (red)
with early enhancement is a typical finding in the case of prostate cancer, whereas healthy prostate tissue is characterized by a steady
slow enhancement (green). High transport constants Ktrans (e) and kep (f) can confirm suspicion of prostate cancer. Prostate adenocarci-
noma with a Gleason score of 4 + 5 = 9 was diagnosed after prostatectomy (image from Reference (30)). (Color version of figure is available
online.)
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DWI was mostly often combined with T2W in these CADx
systems. Peng et al. demonstrated that the combination of 10th
percentile ADC, average ADC, and T2W skewness with
CADx is promising in the differentiation of PCa from normal
tissue (27). Niaf et al. presented a CADx system based on T2W,
DWI, and DCE to assist cancer identification in the PZ (18).
Stember et al. developed a software system that identifies sus-
picious regions at the prostate TZ using signal and textural
features on T2W and ADC maps, free of user input (51). Kwak
et al. recently designed a prostate CADx combined T2W and
high b-value (b = 2000 s/mm2) DWI. They obtained an area
under a receiver operating characteristic curve (AUC) of 0.89
(52).

MRS

In MRS, the position of each metabolite peak in the output
graph reflects the resonant frequencies or chemical shifts of
its hydrogen protons, and the area of each peak reflects the
relative concentration of that metabolite (53). The domi-
nant peaks observed in prostate MRS are from protons in citrate
(2.60 ppm), creatine (3.04 ppm), and choline compounds
(3.20 ppm) (Fig 5) (53).

As a metabolic biomarker for PCa, MRS has not gained
wide acceptance in routine clinical practice owing to a variety
of factors including the length and complexity of data acqui-

sition, zonal anatomy, processing, and analysis. Visual
interpretation of the spectra by a trained spectroscopist is time-
consuming and requires accurate knowledge of prostate
anatomy. Therefore, a method for automated analysis of pros-
tate MRS data is necessary.

Over the last decade, with a view on assisting radiologists
in interpretation and analysis of MRS data, several research-
ers have begun to develop CADx schemes for PCa
identification from spectroscopy. Tiwari et al. developed an
approach that integrated a manifold learning scheme (spec-
tral clustering) with an unsupervised hierarchical clustering
algorithm to identify spectra corresponding to cancer on pros-
tate MRS (54). The scheme successfully identified MRS cancer
voxels with a sensitivity of 77.8%, a false-positive rate of 28.92%,
and a false-negative rate of 20.88% (54). They also pre-
sented a CADx scheme that integrated nonlinear dimensionality
reduction with an unsupervised hierarchical clustering algo-
rithm to automatically identify suspicious regions on the prostate
using MRS (55). They introduced the use of wavelet em-
bedding to map MRS and T2W texture features into a
common space to identify the voxels that are affected by PCa
(56). They recently presented a computerized decision support
system called Semi Supervised Multi Kernel Graph Embed-
ding that may be developed into a powerful diagnostic and
prognostic tool for distinguishing high- and low-grade PCa
in vivo. Matulewicz et al. used an artificial neural network

Figure 4. Multiparametric MRI (mp-MRI)
of the prostate. Axial T2 turbo spin echo
(TSE) (a) and coronal T2 TSE (b) images
show a well-defined T2 hypointense lesion
in the peripheral zone (arrow) with corre-
sponding high signal on diffusion-weighted
imaging (DWI) (c) and low signal on the ap-
parent diffusion coefficient (ADC) map (d).
Biopsy of this region was positive for
Gleason 4 + 3 prostate cancer (images from
Reference (42)).
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model to automatically detect cancerous voxels from pros-
tate MRS datasets and found that the additional information
concerning the prostate’s zonal anatomy can improve the per-
formance of the detection (57).

Other Imaging Methods

Although T2W, DWI, DCE-MRI, and MRS are more com-
monly used in mp-MRI, some MRI methods, including
diffusion tensor imaging (DTI), diffusion kurtosis imaging
(DKI), and MR elastography (MRE), have been investi-
gated for the characterization of PCa (58–61). Other MRI
methods, including proton density–weighted image (62) and
T1 map (14), had also been added for feature calculation pur-
poses in some CADx systems.

DTI has been widely used in clinical applications, espe-
cially in neuro- and musculoskeletal imaging. Fractional
anisotropy and ADC values provided from DTI data reflect
the degree of water diffusion restriction in different tissues.
Pathologic processes may cause a change in normative frac-
tional anisotropy values and disruption of fibers in tractography.
The feasibility of performing DTI of the prostate had been
demonstrated by some studies, and DTI tractography can suc-
cessfully visualize fiber tracts around the prostate (58). DTI
tractography might be applicable to the estimation of struc-
tures of the prostate (59), the characterization of PCa (60),
and monitoring prostatic structural changes under radiotherapy
(61).

The novel technique, DKI, enables characterization of non-
Gaussian water diffusion behavior. DK model may add value
in PCa detection and diagnosis, and DKI potentially offers a
new metric for assessment of PCa (63). A recent study dem-
onstrated no significant benefit of DKI for detection and grading
of PCa as compared to standard ADC in the PZ determined
from b-values of 0 and 800 s/mm (64). The mechanical prop-
erties of the tissue of interest are calculated from the wave
fields and displayed as an image, commonly referred to as an
elastogram. In MRE, an external mechanical excitation is
applied to the tissue of interest to induce tissue vibrations (65).
MRE has been shown to be of clinical value in MRI for its

ability to detect tissue abnormalities in organs such as the liver
(66), brain (67), and breast (68–70). More recently, research-
ers have also focused on the development of MRE methods
to detect PCa (71–73). The resulting wave fields are imaged
using a motion-sensitized MRI pulse sequence. Elastograms
may add another dimension to current mp-MRI techniques
for diagnosis of PCa, and may further increase the sensitiv-
ity and specificity of such techniques.

T1 maps offer quantitative T1 values and can be pro-
duced by a variety of methods, such as multiple inversion or
multiple repetition time acquisitions, typically requiring lengthy
acquisition times. Another approach taken in the context of
the prostate has been to employ spoiled gradient echo se-
quences where it is possible to obtain T1 estimates in relatively
short acquisition times by varying the radiofrequency (RF)
flip angle (74). The T1 mapping is not included in most CADx
systems. Vos et al. (14) had presented a fully automatic CADx
by combining a histogram analysis on mp-MR images in-
cluding T1, PK, T2, and ADC maps.

MR lymphography has been used for the investigation of
the lymphatic channels and lymph glands. Different imaging
techniques, including nanoparticle-enhanced (75,76) and non-
contrast MR lymphography (77,78), had been developed for
detection of nodal metastases. MR lymphography is a non-
invasive technique that is well suited for the examination of
regional (intrapelvic) lymph node metastases in PCa.

MR IMAGE QUANTIFICATION METHODS

General Framework

Development of CAD systems includes several aspects: image
preprocessing, algorithm development, methodology for CADx
performance assessment, validation using appropriate cases to
measure performance and robustness, observer performance
studies, performance assessment with a clinical trial, and ul-
timately, commercialization. The development must confront
several challenges. Computerized image procedure may cover
different aspects of segmentation, registration, feature extrac-
tion, and classifiers. A computer algorithm should be developed

Figure 5. Magnetic resonance spectros-
copy (MRS) of prostate cancer. (a) Axial T2-
weighted MR images at the level of the
prostate mid-gland to apex shows a large
hypointense lesion on the left peripheral
zone. (b) A three-dimensional (3D) MRS
shows a normal spectrum on the right pe-
ripheral zone (red box) with normal choline
plus creatine-to-citrate ratio of 0.48. In the
voxel placed over the lesion on the left pe-
ripheral zone (blue box), the curve shows
an increased choline peak and the citrate
peak is markedly reduced. Random sys-
tematic biopsy showed a Gleason grade 9
(4 + 5) prostate adenocarcinoma on the left
apex (images from Reference (53)). (Color
version of figure is available online.)
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based on the understanding of image reading by radiolo-
gists, such as how radiologists detect certain lesions, why they
may miss some abnormalities, and how they can distinguish
between benign and malignant lesions. It is important to
develop CADx systems that extract quantitative data in a more
accurate and automated fashion.

Many different types of CADx systems are produced to
locate/diagnose PCa in MRI, including T2W, DWI, DCE-
MRI, and MRS. Considering the particularity of PCa in
anatomy, pathology, and clinic, the core of a CADx system
for the detection of PCa is associated with its computerized
algorithms. In general, the pipeline of the CADx system for
PCa is visualized schematically in Figure 6. In the initial stage,
lesion candidates are selected within a likelihood map that is
generated by a voxel classification of one or more images. Here-
after, the lesion candidates are segmented into a ROI from
which region-based features are extracted. Finally, the ex-
tracted information is fused by a classifier into malignancy
likelihood. The following sections describe each step in detail.

Preprocessing

The purpose of preprocessing is to normalize the MR data
or to transform the MR data to a domain in which prostate
lesions can be easily detected.

For T2W-MRI, the image intensities can vary, even when
using the same protocol and the same scanner. The quality
of images depends on the acquisition conditions such as tem-
perature, calibration adjustment, B0 intensity, coil position,
and the receiver gain value. In addition, the intensity varia-
tion will increase when different scanners are used. This
relationship must be taken into account for MR image anal-
ysis. Collewet et al. (79) proposed four schemes for the intensity
normalization. The most used method is that intensities are
proportionally normalized by defining the median + 2*
(interquartile range).

ADC maps calculated from DWI are useful for the detec-
tion of PCa with a relatively high specificity. However, it has
lower resolution than T2W-MRI and is subject to magnetic
susceptibility artifacts (17). ADC represents a quantitative as-
sessment of water diffusion. Lower ADC value is associated
with higher rate of malignancy. PCa can be identified as a
low-signal region on ADC maps against a background of
normal tissue with higher signal intensity (17).

Intensity inhomogeneity arises from the imperfections of
the image acquisition, which can reduce the accuracy of seg-

mentation, classification, and registration. The most intuitive
method to correct intensity inhomogeneity is image smooth-
ing or homomorphic filtering (80). Vovk et al. (81) classify
inhomogeneity correction methods into two categories, which
are prospective and retrospective. Prospective methods aim
at the calibration and improvement of image acquisition pro-
cesses. Retrospective methods rely exclusively on the
information of the acquired images or on a priori knowl-
edge. Sled et al. (82) proposed a nonparametric nonuniform
intensity normalization (N3) method for inhomogeneity cor-
rection, which is independent of pulse sequence. Tustison et al.
(83) proposed a variant of N3 for bias field correction. Similar
to the N3, the source code, testing, and technical documen-
tation are publicly available and the package is “N4ITK.” This
algorithm is available to the public through the Insight Toolkit
of the National Institutes of Health.

Segmentation

The segmentation aims to reduce the burden of the classi-
fier in the later stages. Therefore, the classifiers focus only on
the prostate region obtained by segmentation methods. T2W
imaging provides the best resolution and contrast to show the
anatomy of the prostate and has a very high sensitivity for
PCa. Therefore, T2W-MRI is the most useful image se-
quence in determining the contours of the prostate.

Extensive studies were developed to segment the prostate
from MR images (62,84–90). It can be a challenging task to
obtain accurate prostate volume in T2W-MRI. First, the con-
trast between the prostate and the surrounding tissues can be
low. Therefore, it may be difficult to accurately segment the
boundary of the prostate. Second, the prostate shapes of dif-
ferent patients can be significantly different. Even for the same
patient, the prostate motion at different patient positions can
be large, which results in a shape difference on MR images.
Third, MR image appearance, quality, and the presence of
artifacts can be affected by different scanners, which in turn
can have a large influence on the performance of comput-
erized algorithms. All these aspects need to be considered when
developing a robust and accurate segmentation method for
prostate MR images.

Contour- and shape-based methods (91–95) exploit edge
and shape features to segment the prostate, which contains
two categories. The first category is edge-based segmenta-
tion methods. The edge detection operators are used to produce
edges on MR images. The candidate edges are picked up and
then connected to obtain the prostate boundary. Zwiggelaar
et al. (91) developed a semiautomatic method to segment the
prostate in MRI data. Their method exploits the character-
istics of the anatomic shape of the prostate when represented
in a polar transform space. The edge detection and non-
maximum suppression are used to track the boundary of the
prostate.

The second category is deformable model–based segmen-
tation methods. Kass et al. (96) proposed an active contour
model and used the image gradient to evolve a curve. The

Figure 6. Flowchart for computer-aided detection of prostate cancer
in multiparametric magnetic resonance imaging (mp-MRI).
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internal spline force pushes the curve toward the salient image
feature, whereas the external force is responsible for putting
the curve near the object. Chan and Vese (97) proposed a
level set algorithm of the piecewise constant variant of the
Mumford-Shah model (98) for segmentation.

Atlas-based methods are also used to segment the prostate
in MR images (99). An atlas consists of original image data
and its corresponding manual segmentation. The atlas can be
used as a reference to segment the prostate of a new patient.
Klein et al. (99) proposed an automatic method for the seg-
mentation of the prostate in three-dimensional (3D) MR
images. Their method is based on nonrigid registration of a
set of pre-labeled atlas images. The label images of the de-
formed atlas are fused to yield a segmentation of images from
a new patient.

Besides the above methods, a global optimization algo-
rithm called graph cut (100,101) is becoming more and more
popular owing to its efficient global minimization. The seg-
mentation problem can be formulated as a minimization of
an energy minimization. Egger (102) proposed a graph-
based approach to automatically segment the prostate based
on a spherical template. The minimal cost on the graph is
optimized by a graph cut algorithm, which can get the
segmentation of the prostate volume. Mahapatra and Buhmann
(85) proposed a fully automatic method for prostate segmen-
tation using random forests classifiers and graph cuts. The
prostate probability map was generated based on a random
forests classifier. The negative log likelihood of the proba-
bility maps was used as the penalty cost in an energy function,
which was minimized by graph cuts. Tian et al. (103) pro-
posed a supervoxel-based segmentation method for the prostate.
The prostate segmentation problem was considered as assign-
ing labels to supervoxels. An energy function with both data
and smoothness terms was used to model the labels, which
was minimized using graph cuts. The segmentation results are
shown in Figure 7. Other segmentation methods were also
developed for the prostate (104,105). Ghose et al. (105) re-
viewed segmentation methods for the prostate in TRUS, MR,
and computed tomography (CT) images. They studied the
similarities and differences among the different methods, and
highlighted their advantages and disadvantages to assist in the

choice of an appropriate segmentation method. They also
showed a comprehensive description of the existing methods
in all TRUS, MR, and CT images, and highlighted their key
points and features. They provided a strategy for choosing seg-
mentation method for a given image modality.

A publicly available data set called Medical Image Com-
puting and Computer Assisted Interventions (MICCAI)
Challenge Prostate MR Image Segmentation (104) can be used
to evaluate the performances of the new proposed methods.
This data set contains 50 cases with ground truths for train-
ing, and 30 cases without ground truths for testing, which
are 3D T2W-MR transverse images of the prostate. The MR
images were obtained from multicenter, multivendor, and dif-
ferent acquisition protocols (ie, with/without endorectal coil
[ERC], differences in slice thickness).

Registration

Image registration is a process of aligning two or more images,
which aims to find the optimal transformation that best aligns
the structures of interest in the input images. Image registra-
tion is needed to integrate the features from different images
of mp-MRI such as DCE-MRI and T2W-MRI. The reg-
istration of images requires the selection of the feature space,
a similarity measure, a transformation type, and a search strat-
egy (106). The digital imaging and communication in medicine
(DICOM) header of MR images can provide coordination
and orientation information that are useful for registering T2W,
ADC, and Ktrans maps. T2W-MRI is considered as the ref-
erence. Other modalities can be registered to T2W-MRI by
aligning the coordinates of their origins, which are obtained
from the DICOM header. If necessary, resolution adjust-
ment is also performed after the alignment.

Registration is also used to validate in vivo MRI using ex
vivo histologic images (107,108). To obtain the reliable ground
truth of the PCa region, whole-mount histology is per-
formed on ex vivo prostate. The pathologist labels the cancer
region in the histology images. Based on the registration
between the whole-mount histology and T2W-MRI, the la-
beling of the cancer in histology can be mapped to T2W-
MRI for validation (107,108). Kalavagunta et al. (108) proposed

Figure 7. Prostate segmentation on
magnetic resonance (MR) images. Left:
Two-dimensional (2D) MR image and seg-
mentation results where the red curve
represents the segmentation from a com-
puter algorithm, whereas the blue curve is
the ground truth labeled by a radiologist.
Right: Three-dimensional (3D) visualiza-
tion after segmentation. The gold region is
the prostate surface obtained by the com-
puter algorithm, whereas the red region is
the ground truth. (Color version of figure is
available online.)
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a method to register MRI and histology using local affine trans-
formations guided by internal structures. First, the histologic
and MR images are first segmented, scaled, and translated.
Second, the prostate capsule and internal structure masks
are identified to constrain the pathology transformation. A
transformation matrix is obtained by registering two images
based on capsule and internal structure masks. Third, the pa-
thology images are warped using a computed transformation
matrix. Fourth, a transformation matrix is applied for each
annotated cancer region. The warped cancer regions are su-
perposed on registered pathology images. Last, the cancer
regions in MRI can be obtained by mapping the cancer regions
of pathologic images to MR images. In another study,
Chappelow et al. (107) presented a new registration method
that maximizes the combined mutual information shared by
the intensity of the reference image and multiple represen-
tations of the floating images in multiple feature spaces. The
method provides enhanced registration performance by com-
bining the intensity information with transformed feature from
the images. These features are not susceptible to intensity ar-
tifacts and provide additional information for the registration
between the reference and floating images. This method is
particularly useful for registering MRI and histology.

Feature Extraction

Feature extraction plays an important role in prostate MRI
CADx systems. Classic features for medical images include
intensity, shape, texture, and statistical features. For medical
image classification, choosing the right features for a classi-
fier is more important than choosing the classifier itself (62).

Litjens et al. classified the features into five types: inten-
sity, PK, texture, blobness, and anatomic features (62). For
the intensity feature, a T2-estimate map is generated by using
the MR signal equation, the proton density image, and a ref-
erence tissue (88). Anatomic features include the relative distance
to the prostate boundary and the relative position feature. Both
the relative distance and the relative position features are cal-
culated with respect to the prostate surface obtained by
segmentation methods. For the PK feature, the traditional anal-
ysis is incorporated in their CADx system by using a curve
fitting technique to fit a bi-exponential curve to the time data,
as presented in Reference (109). For the texture feature, a
Gaussian texture bank was used to capture the textural dis-
tortions (22). For the blobness feature, it was found that PCa
tends to appear as a blob-like lesion in DWI and DCE-
MRI. The blobness filter presented by Li et al. was chosen
as a blobness measure (110). Blobness is calculated on the ADC,
tau, and LateWash images, as well as on the Ktrans and Kep images
(110).

Shah et al. (17) created an mp-MRI feature set for CADx
systems (Fig 8). First, to reduce interpatient variability,
normalized T2W maps were calculated from the transversal
T2W intensities using the average fat signals adjacent to the
prostate as the reference. Second, quantitative ADC maps
were computed from the transversal DWI by fitting the de-

pendence of the signal intensity in each pixel. Third, each
dynamic curve was de-noised by using a wavelet filter for
DCE-MRI. The PK parameters were extracted by using the
generalized kinetic model (111,112). Then, the generalized
kinetic model was fitted to the measured concentration time
curves, using the linear least squared method (112) to yield
the volume transfer constant Ktrans and the rate constant kep.
Finally, the normalized T2W and ADC maps were resized
to have a pixel resolution equal to the T1 and Ktrans and kep

maps to form the final feature set for the CADx system.
Niaf et al. extracted about 140 kinds of features for a CADx

system (18). Most of these features were chosen based on their
proven efficiency between cancer and noncancer. Two cat-
egories of features were proposed: image features and functional
features. For image features, there were three types: gray-
level features, texture features, and gradient features. The image
intensity values of T2, DCE, and ADC maps were used as
gray-level features. First-order texture measurements were com-
puted for each pixel over a local window, which includes mean,
median, standard deviation, and average deviation. Second-
order texture features were computed based on two neighboring
pixels, which includes co-occurrence matrix. The Sobel and
Kirsch filters and numerical gradient operators were used to
compute gradient features (Fig 9).

Radiomics is an emerging field for the quantification of
tumor phenotypes by applying a large number of quantita-
tive image features (113,114). Radiomics can provide
complementary and interchangeable information to improve
individualized treatment selection and monitoring. Because
medical imaging technology is routinely used in clinical prac-
tice worldwide, radiomics may have a high clinical impact
on future patient management. The workflow of radiomics
consists of three steps (113). The first step is the acquisition
of standardized images for diagnostic or planning purposes.
On the images, the tumor regions are extracted by an algo-
rithm or by an experienced radiologist. Second, quantitative
imaging features are extracted from the tumor regions. These
features involve tumor image intensity, texture, and shape and
size of the tumor. Last, all the extracted features are analyzed
and selected by a model. The most informative features are
identified and incorporated into predictive models for treat-
ment outcome. Radiomics, as a high-dimensional mineable
feature space, can be used for PCa. Cameron et al. had con-
structed a comprehensive radiomics feature model to detect
tumorous regions using mp-MRI (115). New radiomics-
driven texture feature models had been developed for the
detection of PCa and for the classification of PCa Gleason
scores by using mp-MRI data (116–118).

Classification

Image classification involves training and testing with fea-
tures extracted from image data and its corresponding labels
(62). A classifier is usually trained by using the labeled image
data set and applying it to unseen image data sets. Several
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classification techniques from the machine learning field have
been developed to pick up discriminative features. Support
vector machines (SVMs) and random forests could achieve
good performance based on the positive and negative train-
ing samples (17,119). A pixel classification provides a likelihood
between 0 and 1 for each pixel, with 0 indicating no suspi-
cion of PCa and 1 indicating high suspicion of cancer.

Litjens et al. (62) experimented with three different clas-
sifiers: a linear discriminate classifier, a GentleBoost classifier
(120), and a random forests classifier (119) with regression trees.
Shah et al. used SVM to create a classifier model (17). Because
real data are not linearly separable, the SVM implementa-

tion was used to allow relaxed constraint for misclassified points.
SVM “kernel trick” was also implemented to enable opera-
tions to be performed in the input space rather than in the
potentially high-dimensional feature space (121).

Chan et al. (122) investigated the use of a statistical clas-
sifier in detecting PCa by combining information from MR
images. SVM is used to predict the tumor likelihood in the
PZ using the derived features. For SVM training, they ran-
domly sampled 10% of the PZ data and retained all the tumor
data to confine the training dataset to a manageable size for
SVM training convergence. The radial basis function kernel
was used for SVM. These works indicate that the SVM

Figure 8. Flowchart for a computer-aided detection (CAD) system based on a multiparametric magnetic resonance imaging (mp-MRI). The
cancer probability map is the final outcome of the algorithm (image from Reference (17)).

Figure 9. Image features for prostate cancer detection. (a) Prostate cancer superposed in green. (b) First-order statistics (standard devi-
ation). (c) Sobel-Kirsch feature. (d) Second-order statistics (contrast inverse moment). (e) Corresponding time-intensity curves for CaP (red)
and benign (blue) regions are shown based on dynamic contrast-enhanced imaging (DCE-MRI) data (images from Reference (129)). (Color
version of figure is available online.)
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classifiers and random forests work well on the problem of
classifying prostate tumors on mp-MRI.

VALIDATION

The accuracy of the “gold standard” is important when de-
veloping a CADx system for prostate MRI. Histopathology,
as the ground truth, usually includes findings from prosta-
tectomy specimens or biopsy specimens. The validation of
CADx systems is summarized in Table 1. To transfer the labels

from pathology to MR images, MR images usually need to
be registered with pathologic sections of the prostate. An ac-
curate registration of histologic and MR images serves as the
bridge between in vivo anatomic information and ex vivo
pathologic information, which is valuable in developing a
CADx system.

Whole-mount sections are generated from tissue slices, and
microscopic slices are stained with hematoxylin-eosin after being
embedded in paraffin (111,123). Pathologists outline each lesion
on the microscopic slices. Gleason scores of different regions
may also be provided on the microscopic slices. For

TABLE 1. Validation of CADx Systems

Reference Ground Truth on the Histology Candidate on MR Image Image Registration

Chan et al. (122) Biopsy MO NA
Puech et al. (39) Needle biopsy or prostatectomy MO NA
Tiwari et al. (54) Biopsy Sextant location determined by

radiologist
NA

Vos et al. (36) WMHS + MO MO 3D rendering mode
Viswanath et al. (140) WMHS + MO MANTRA Multimodal image registration
Viswanath et al. (129) WMHS MANTRA Multimodal image registration
Vos et al. (37) WMHS Not specified Not specified
Liu et al. (141) WMHS + MO MO + ex vivo MRI Manual
Tiwari et al. (55) WMHS + sextant boundaries A joint review session of trial imagers

and pathologists
NA

Artan et al. (142) WMHS + MO Tumor location is transferred to the in
vivo MRI from histologic images + ex
vivo MRI

NA

Vos et al. (143) WMHS + MO MO Mutual information registration
Viswanath et al. (144) WMHS + MO Registration from histologic images MACMI
Lopes et al. (145) WMHS + drawn by urologists Drawn by urologists Manual correspondence
Liu and Yetik (26) WMHS + MO MO + ex vivo MRI Manual registration
Sung et al. (146) Radical prostatectomy + MO The radiologist matched the

pathologic slices with corresponding
MRI

NA

Tiwari et al. (56) WMHS MO + ex vivo MRI Manual registration
Viswanath et al. (22) WMHS + MO Registration from histologic images Multimodal elastic registration
Vos et al. (14) Needle biopsy Combining the findings with,

histopathology of MR-guided
samples by radiologist.

NA

Niaf et al. (18) WMHS + MO MO Manual registration
Artan and Yetik (147) WMHS + MO MO + ex vivo MRI Manual registration
Shah et al. (17) WMHS + MO Not specified PSM
Matulewicz et al. (57) WMHS + MO MO Manual registration
Hambrock et al. (13) WMHS + MO MO Manual registration
Tiwari et al. (148) WMHS + MO MO Manual registration
Peng et al. (27) WMHS MO Manual registration
Ginsburg et al. (149) WMHS + MO Registration from histologic images Nonlinear registration
Stember et al. (51) Needle biopsy Not specified NA
Niaf et al. (150) Prostatectomy + MO MO Manual registration
Garcia Molina et al. (16) Prostatectomy + MO MO Manual registration
Litjens et al. (62) Needle biopsy Not specified NA
Kwak et al. (52) Needle biopsy Determined by radiologists NA
Zhao et al. (151) Biopsy MO NA

3D, three-dimensional; CADx, computer-aided diagnosis; MACMI, multi-attribute, higher order mutual information based elastic registra-
tion scheme; MANTRA, multi-attribute, non-initializing, texture reconstruction based active shape model (ASM); MO, manual outlined regions
of lesions; MR, magnetic resonance; NA, no registration was used; PSM, patient-specific molds; WMHS, whole-mount histologic sections.
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correlation between MR images and histopathologic images,
the corresponding anatomic landmarks and cancerous regions
are manually labeled by an expert. The urethra may serve as
a guide for correlating the images. To improve the accuracy
and efficiency of the correlation, some automatic methods have
been developed (111,124).

There are several challenges in establishing automatic cor-
relation between in vivo MR images and histopathologic
images. The orientation of the specimen and its sections may
be different from that of in vivo MRI. There are mis-
matches between MRI and histopathology, which make it
difficult to assess the true accuracy of MRI. Once the ana-
tomic orientation in the body is lost, it may be difficult to
section the prostate in the same plane as that of in vivo MR
images. The specimen can be marked with separate colors on
the left, right, and anterior aspects for anatomic orientation
(111). Using image processing, CAD, and rapid prototyping
technology, a customized mold has been used to process pros-
tatectomy specimens for each patient (124). The customized
mold holds the prostate in the same position and the same
shape as those of in vivo MR images and guides the cutting
knife to obtain tissue blocks that correspond to the image slices.

The prostate is an easily deformable organ, hence, the gland
deforms during and after prostatectomy. Additionally, pros-
tate MRI is often performed by using an ERC, which further
deforms the gland. Specimen formalin fixation and paraffin
embedding also induce variable tissue shrinkage. Deform-
able image registration provides a high degree of flexibility
for registration of histologic images with in vivo/ex vivo MR
images, and can assist in more accurate evaluation of MRI
findings. Boundary landmarks and internal landmarks of the
same prostate have been used in a deformable registration al-
gorithm. Mazaheri et al. describe a semiautomatic method by
using a free-form deformation algorithm based on B-splines
(125). This method enabled successful registration of ana-
tomic prostate MR images to pathologic slices. Jacobs et al.
(126) proposed a method for the registration and warping of
MR images to histologic sections. This method consists of a

modified surface-based registration algorithm followed by an
automated warping approach using nonlinear thin plate splines
to compensate for the distortions between the datasets.

There are two general approaches to map ex vivo histo-
logic PCa extent to preoperative MR images. The first method,
perhaps the more intuitive approach, is to reconstruct the 3D
histologic volume, and then register the 3D histologic volume
with the 3D MR volume (127,128). The second approach
is to register each two-dimensional (2D) histology slice to its
corresponding 2D MRI slice separately (107,129). In the first
approach, one critical prerequisite was the accurate recon-
struction of the histologic volume, whereas in the second
approach, the prerequisite was to determine the histology-
MRI slice correspondence. In some cases, the former
prerequisite may not be achievable; hence, the only solution
is to take the second approach. There is an increasing inter-
est in the registration of 3D histopathology with prostate MRI.
Three-dimensional reconstruction of prostate histology fa-
cilitates these registration-based evaluations by reintroducing
3D spatial information lost during histology processing
(130,131). Patel et al. (132) presented a scheme for the reg-
istration of digitally reconstructed whole-mount histology to
preoperative in vivo mp-MRI using spatially weighted mutual
information. McGrath et al. (133) used reference landmarks
that are visible in both data sets to assist 3D histopathology
reconstruction and thus can provide important information
on the deformation effects of fixation, and hence improved
registration accuracy. Histostitcher, a software system de-
signed to create a pseudo whole-mount histology section from
a stitching of four individual histology quadrant images, is
another alternative for reconstructing pseudo whole-mount
prostate images (134).

Registering pathologic information to mp-MRI is a chal-
lenging problem in developing a CADx system for mp-
MRI (Fig 10). Chappelow et al. (135) described a method
based on mutual information that registers T2W, DCE-
MRI, and ADC. However, this method is based on 2D
histology and requires considerable expertise to determine the

Figure 10. Registration between multi-
parametric magnetic resonance imaging
(mp-MRI) and histology.
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correspondence between histologic and MR images. Orczyk
et al. (136) described a method based on the present registration
method and were the first to create a 3D counterpart within
the same reference space between histology and both ana-
tomic and functional sequences provided by prostate mp-
MRI (Fig 11). The method enables a true, deformable
transformation and achieves an accuracy of 1–2 mm. The reg-
istration of different MR images is critical considering prostate
motion, especially related to rectal peristalsis. Orczyk et al.
(136) used rigid registration to correct motion between dif-
ference sequences.

Although whole-mount prostate histologic analysis pro-
vides accurate label information for training a CADx system,
whole-mount histology is expensive and registering whole-
mount histologic slices with 3D mp-MRI is a challenging
problem. Therefore, histologic interpretations from biopsy speci-
mens are used to determine the ground truth in some studies
(14,62,122,137,138). In vivo biopsy can label only the
pathology of the core inside the prostate. Radiologists must

manually define lesion boundaries on mp-MRI retrospec-
tively based on the biopsy results.

Meyer et al. (139) reviewed the registration methods of 3D
medical images and histopathology of the prostate. They ex-
amined the registration process and techniques for registering
MRI or positron emission tomography with whole-mounted
prostatectomy specimens.

CLINICAL APPLICATIONS

Diagnosis

The functional MRI data, like DCE-MRI and MRS, are more
complex and larger in amounts than anatomic MRI. There are
clinical needs for the development of fast, cost-effective, sup-
portive techniques, such as computer-aided analysis tools, for easy
and more reproducible diagnosis of PCa. Researchers have focused
on developing CADx methodology for automated prostate MRS
classification and DCE-MRI analysis. Because all functional MRI

Figure 11. Registration between magnetic resonance imaging (MRI) and histology. Top: Workflow for pathology-multiparametric (mp)-
MRI registration in a surgical three-dimensional (3D) space. Bottom: 3D deformable registration of virtual whole-mount histology (1), fresh
specimen (2), T2-weighted MRI (3), perfusion (4), and diffusion (5) sequences (apparent diffusion coefficient [ADC]) applied to prostate cancer
(image from Reference (136)).
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techniques have their strengths and shortcomings, single tech-
nique cannot adequately detect and characterize PCa. The
combination of anatomic (T2W) images and functional
techniques has been shown to increase the accuracy of
MRI for the diagnosis of PCa. Table 2 compares the perfor-
mance of the major published prostate CADx systems
(13,14,16–18,22,26,27,36,37,39,51,52,54–57,62,122,129,140–
151). Chan et al. were one of the first groups who imple-
mented an mp-MRI CADx system for the diagnosis of PCa
(122). In their approach, they used line-scan diffusion, T2,
and T2W images to identify predefined areas of the PZ of
the prostate for the presence of PCa. Viswanath et al. (129)
present an mp-MRI CADx system for PCa detection by in-
tegrating functional and structural information obtained via
DCE and T2W-MRI. Liu et al. (141) present fuzzy Markov
random field models for PCa detection of multispectral MR
prostate images. Tiwari et al. (55) investigated the use of MRS
in combination with T2W-MRI to identify the voxels that
are affected by PCa. They also introduced the use of wavelet
embedding to map MRS and T2W texture features into a
common space. In a study by Peng et al. (27), the combi-
nation of 10th percentile ADC, average ADC, and T2W
skewness with CADx yielded an AUC value of 0.95 in dif-
ferentiating PCa from normal tissue. The combination achieved
higher accuracy than any MR parameter alone. In a more
recent study by Litjens et al. (62), they developed a fully au-
tomated CAD system that consists of two stages. The first
(detection) stage consists of segmentation of the prostate on
the transversal T2W-MRI, extraction of voxel features from
the image volumes, classification of the voxels, and candi-
date selection. The second (diagnosis) stage consists of candidate
segmentation, candidate feature extraction, and candidate clas-
sification. The system was evaluated on a large consecutive
cohort of 347 patients and yielded an AUC value of 0.889.

Aggressiveness

Treatment choice for PCa is based on initial PSA level, clin-
ical stage of disease, and Gleason score, together with baseline
urinary function, comorbidities, and patient age (152,153).
Therefore, there is an urgent clinical need to detect high-
grade cancers and to differentiate them from indolent, slow-
growing tumors. The Gleason system, using a rating system
to determine the grade of PCa, remains one of the widely
used prognostic factors in PCa. The higher grade tumors have
a tendency to grow quickly and to spread faster than lower
grade tumors.

DWI, DCE-MRI, and MRS are noninvasive assessment
methods of PCa aggressiveness. The Gleason grading system
is a fundamental indicator of the aggressive nature of PCa.
Studies found that ADC image features correlate with Gleason
scores (27,28,46,154–156). A study by Yamamura et al. found
a highly significant negative correlation between ADC value
and the Gleason score, whereas MRS did not show a signif-
icant correlation (157). Recently, Zhang et al. found that
TRUS-guided, MRI-directed biopsies improved the predic-

tion of PCa aggressiveness in comparison to 12-core TRUS-
guided biopsies. DWI-directed biopsies had a superior
performance when compared to MRS-directed biopsies in the
PZ (6). Diffusion of water molecules in tumor tissue was
thought to reflect tissue architecture such as cell density and
nucleus-to-cytoplasm ratio, and reductions in ADC values in
tumor tissue in fact correlates well with increases in cellular
density (158–160). For these reasons, ADC value has re-
ceived more attention as a predictor of Gleason score in PCa.

DCE-MRI is based on the permeability of blood vessels
and extravasation of contrast agent into the surrounding tissue.
Investigators have observed that quantitative parameters (Ktrans

and Kep) and semiquantitative parameters (wash-in and washout)
derived from DCE-MRI have the potential to assess the ag-
gressiveness of PCa. Oto et al. found a moderate correlation
between kep and microvessel density of PCa (154). Peng et al.
found that Ktrans moderately correlate with Gleason scores (27).

In vivo MRS imaging has revealed a trend toward an in-
creased (choline + creatine)/citrate ratio with increased Gleason
score (161,162). This relationship has also been demon-
strated by ex vivo high resolution magic angle spinning (HR-
MAS) MRS (163). However, other in vivo MRS imaging
studies have found no correlation between metabolite ratios
and aggressiveness (164,165).

On T2W-MRI, changes in signal intensity for PCa de-
tection have been associated with its aggressiveness (166). In
a large retrospective study with 220 patients (166), T2W-
MRI and MRS imaging scores based on a three-point scale
for clinical PCa aggressiveness were significantly correlated
to biologic markers such as androgen receptor levels, which
were associated with PCa progression. In that study, the com-
bination of biomarkers with T2W-MRI and MRS imaging
results can discriminate clinically unimportant PCa. If mp-
MRI can potentially aid in identifying low-grade disease in
vivo, this might allow PCa patients to opt for active surveil-
lance rather than immediately opting for aggressive therapy.
Lee et al. demonstrated that the simple measurement of the
diameter of suspicious tumor lesions on DWI could improve
the prediction of insignificant PCa in candidates for active sur-
veillance therapy (167).

Although these MRI metrics are related to Gleason score,
the power and threshold value of each metric are different
and how to combine these anatomic and functional MRI in-
formation is still a problem. Developing a computerized decision
support system may help in noninvasive assessment of PCa
aggressiveness. Recently, a system called Semi Supervised Multi
Kernel Graph Embedding was developed to quantitatively
combine T2WI and MRS data to distinguishing benign from
cancerous, and high- from low-Gleason grade PCa regions
in vivo (148).

Biopsy Guidance

TRUS-guided sextant or systematic prostate biopsy is the clin-
ical standard for definitive diagnosis of PCa. The Gleason score
derived from biopsy specimens is important for appropriate
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TABLE 2. Summary of Representative Studies in the Literature

Reference Modality Validation Region Classifier Data Size Performance

Chan et al. (122) T2WI, ADC, T2 Biopsy PZ SVM, FLD 15 FLD, AUC = 0.839; SVM, AUC = 0.761
Puech et al. (39) DCE Prostatectomy PZ and TZ Software titled “ProCAD” 100 PZ, Se/Sp = 100/49%; TZ, Se/Sp = 100/40%
Tiwari et al. (54) MRS Biopsy WP Spectral clustering 14 Se = 77.8%, FP = 28.92%, and FN = 20.88%
Vos et al. (36) DCE WMHS PZ SVM 34 AUC = 0.83
Viswanath et al. (140) DCE WMHS WP LLE and consensus clustering 6 Se = 60.72%, Sp = 83.24%
Viswanath et al. (129) T2WI, DCE WMHS WP Random forest 6 AUC = 0.815
Vos et al. (37) DCE WMHS PZ SVM 38 AUC = 0.80
Liu et al. (141) T2W, T2, ADC, DCE WMHS PZ Fuzzy MRF model 11 Se = 89.58%, Sp = 87.50%
Tiwari et al. (55) MRS Prostatectomy WP NLDR 18 Se = 89.33%, Sp = 79.79%
Artan et al. (142) T2, ADC, DCE Biopsy PZ Cost-sensitive CRF 21 AUC = 0.79
Vos et al. (143) T2WI, DCE WMHS PZ SVM 29 AUC = 0.89
Viswanath et al. (144) T2W, DWI, DCE WMHS WP EMPrAvISE 12 AUC = 0.77
Lopes et al. (145) T2WI WMHS WP SVM, AdaBoost 17 SVM, Se/Sp = 83/91%; AdaBoost,

Se/Sp = 85/93%
Liu and Yetik (26) T2W, DWI, DCE WMHS WP SVM 20 AUC = 0.89
Sung et al. (146) DCE Prostatectomy PZ and TZ SVM 42 PZ, Se/Sp = 89/89%; TZ, Se/Sp = 91/64%
Tiwari et al. (56) T2WI, MRS WMHS WP Random forest 36 AUC = 0.89
Viswanath et al. (22) T2WI WMHS PZ and CG QDA 22 CG, AUC = 0.86; PZ, AUC = 0.73
Vos et al. (14) T1, T2, ADC, DCE Biopsy WP LDA 200 Se = 0.74, at an FP level of 5 per patient
Niaf et al. (18) T2W, DWI, DCE WMHS PZ SVM 30 AUC = 0.89
Artan and Yetik (147) T2, ADC, T1-PC WMHS WP SVM 15 Se = 76%, Sp = 86%
Shah et al. (17) T2WI, ADC, DCE WMHS PZ SVM 31 f-measure = 89%
Matulewicz et al. (57) MRS WMHS WP ANN 18 AUC = 0.968
Hambrock et al. (13) T2WI, DWI, DCE Prostatectomy PZ and TZ In-house–developed CAD system 34 Experienced observers, AUC = 0.91
Tiwari et al. (148) T2WI, MRS WMHS WP SeSMiK-GE 29 AUC = 0.89
Peng et al. (27) T2WI, ADC, DCE Prostatectomy WP LDA 48 AUC = 0.95
Ginsburg et al. (149) T2WI, DWI, DCE WMHS PZ and CG PCA-VIP 108 CG, AUC = 0.85; PZ, AUC = 0.79
Stember et al. (51) T2WI, ADC Biopsy TZ Naive Bayes classifier 18 Predicted TZ tumor in all test patients
Niaf et al. (150) T2WI, DWI, DCE Prostatectomy WP P-SVM 48 AUC = 0.889
Garcia Molina et al. (16) T2WI, ADC, DCE Prostatectomy PZ Incremental learning ensemble SVM 12 Se = 84.4%,Sp = 78.0%
Litjens et al. (62) T2WI, DWI, DCE, PDWI Biopsy WP Random forest 347 AUC = 0.889
Kwak et al. (52) T2WI, DWI Biopsy PZ and TZ SVM 244 AUC of 0.89
Zhao et al. (151) T2WI Biopsy/follow-up PZ and CG ANN 71 CG, AUC = 0.821; PZ, AUC = 0.849

ADC, apparent diffusion coefficient; ANN, artificial neural network; AUC, area under a receiver operating characteristic curve; CAD, computer-aided detection; CG, central gland; CRF,
conditional random fields; DCE, dynamic contrast-enhanced; EMPrAvISE, Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding; FLD, Fisher linear discriminant; FN, false
negative; FP, false positive; LDA, linear discriminant analysis; LLE, locally linear embedding; MRS, magnetic resonance spectroscopy; NLDR, nonlinear dimensionality reduction; PCA, prin-
cipal component analysis; PCA-VIP, variable importance on projection measure for PCA; P-SVM, probabilistic SVM; PZ, peripheral zone; QDA, quadratic discriminant analysis; Se, sensitivity;
SeSMiK-GE, Semi Supervised Multi Kernel Graph Embedding; Sp, specificity; SVM, support vector machine; T1-PC, principal component of T1-weighted dynamic series; T2WI, T2-
weighted imaging; TZ, transition zone; WMHS, whole-mount histologic sections; WP, whole prostate.
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treatment selection. However, PCa is often heterogeneous and
multicentric (168). In addition, the biopsy, which samples a
small portion of the prostate, might not represent the whole
gland efficiently. Traditionally, it is believed that Gleason score
in systematic random TRUS-guided biopsy tends to down-
grade the surgical specimen, because a less-differentiated pattern
may not have been sampled in the biopsy (169,170). Sys-
tematic random TRUS-guided biopsies often require repeated
biopsy procedures, which are associated with discomfort and
potential morbidity (171). To reduce the overtreatment and
the number of biopsies, lesions must be accurately detected,
characterized, and targeted during biopsy. More effective
imaging-guided targeted biopsy techniques are under inves-
tigation to improve the detection rate of prostate biopsies.

Optimization of prostate biopsy requires addressing the short-
comings of standard systematic TRUS-guided biopsy, including
false-negative rates, incorrect risk stratification, detection of
clinically insignificant disease, and the need for repeat biopsy.
MRI is an evolving noninvasive imaging modality that in-
creases the accurate localization of PCa at the time of biopsy,
and thereby enhances clinical risk assessment and improves
the ability to appropriately counsel patients regarding therapy.

Use of mp-MRI for targeted prostate biopsies has the po-
tential to reduce the sampling error associated with conventional
biopsy by providing better disease localization and sampling,
and also has a potential role in avoiding biopsy and reducing
over detection/overtreatment. MRI-compatible biopsy systems
were developed for this purpose (172). More accurate risk strat-
ification through improved cancer sampling may impact

therapeutic decision making. Optimal clinical application of
MRI-targeted biopsy remains under investigation.

There are three different manners in which an MRI-
detected lesion can be targeted for biopsy: (1) direct targeting
within the magnet using MR-compatible devices, also called
in-bore MRI-guided biopsy; (2) use of fusion software to allow
an MRI-defined lesion to be identified on ultrasound during
a TRUS-guided biopsy procedure (Fig 12); or (3) cognitive
targeting, in which the physician reviews the MRI data before
the procedure and attempts to target the suspected area during
the TRUS-guided biopsy using anatomic landmarks as ref-
erence (173). An MRI-guided robotic prostate biopsy system,
named the access to prostate tissue under MRI (APT-MRI)
robotic biopsy system, has been reported with an accuracy
within 2 mm (174). A real-time phase-only cross correla-
tion algorithm-based sequence has been used in transrectal 3
T in-bore MR-guided prostate biopsies (175). Fusion of pre-
biopsy MR images onto interventional TRUS images might
increase the overall biopsy accuracy (176,177). A novel method
to identify the 2D axial MR slice from a pre-acquired MR
prostate volume that closely corresponds to the 2D axial TRUS
slice obtained during prostate biopsy has been reported by Mitra
et al. (178).

Treatment Planning and Therapeutic Response
Assessment

MRI-based techniques are used for computer-aided treatment
procedures such as treatment planning of radiotherapy, MRI-

Figure 12. Magnetic resonance imaging (MRI) and ultrasound fusion for targeted biopsy of the prostate. (a, b) Anterior lesion of the high
suspicious lesion identified on multiparametric (mp)-MRI. (c) Real-time ultrasound targeting the corresponding lesion. (d, e) Three-
dimensional (3D) models demonstrate the target (blue), prostate (brown), and biopsy cores (tan cylinders). (f) Radical prostatectomy pathology
confirmed a 2.3 cm Gleason 8 (4 + 4) cancer centered in the right anterior prostate (images from Reference (200)). (Color version of figure
is available online.)
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guided radioactive seeds placement in prostate brachytherapy, and
MRI-guided local ablation procedures (179–190).

The excellent soft-tissue contrast of MRI means that the
technique is having an increasing role in contouring the gross
tumor volume and organs at risk in radiation therapy treat-
ment planning systems. MRI-planning scans from diagnostic
MRI scanners are currently incorporated into the planning
process by being registered to CT data. The soft-tissue data
from the MRI provide target outline guidance and the CT
provides a solid geometric and electron density map for ac-
curate dose calculation on the TPS computer (191).

A number of minimally invasive, focal, organ-preserving
methods have been used in recent years as further alterna-
tives to the radical treatment of PCa (170). The focal therapy
methods used to date for the prostate include cryotherapy,
high-intensity focused ultrasound, laser-induced thermal ab-
lation, and radioactive seed placement. Mp-MRI makes it
possible to determine the exact location of tumor foci that
are generally accessible for ablation or radioactive seed place-
ment. Moreover, mp-MRI can also monitor treatment during
and after minimally invasive therapy. A CADx system for the
prostate may have potential value in helping clinicians to target
tumor foci during treatment.

Mp-MRI can also be used as an imaging biomarker for
monitoring therapeutic response, including radiotherapy of
localized PCa (191) and systemic therapy for metastatic disease.
Successful treatment response to therapy is usually depicted
by reductions in signal intensity accompanied by ADC in-
creases (192–194). There are clinical needs to develop mp-
MRI–based CADx systems for monitoring therapeutic response
of the prostate in the future.

DISCUSSION AND FUTURE DIRECTIONS

Unlike breast and lung cancer, PCa CADx systems for MR
images have not been widely used in daily clinical work for
detection or diagnosis. The majority of the prostate CADx
systems reported the AUC in the range from 0.80 to 0.89
(179), whereas one reported AUCs of 0.96 (46), which rep-
resented a high performance. However, most systems generated
lesion candidates based on manually selected ROIs, which may
be data set dependent, and employed a relatively small data
set. Validation on a large-scale data set with several hundred
patients is required. A prostate CADx system should be tested
in multicenter trials to make the systems widely usable in clin-
ical work.

One challenge of prostate CAD is related to mp-MRI pro-
tocols. Both 3 T protocols and ERCs have the advantage of
increasing the signal-to-noise ratio. At 3 T without the use
of an ERC, image quality can be comparable to that ob-
tained at 1.5 T with an ERC (195). Turkbey et al. found that
dual-coil prostate MRI detected more cancer foci than non-
ERC MRI at 3 T on T2W and DWI (196). At 3 T MRI,
DWI images and ADC maps using b = 1500 s/mm2 should
be considered more effective than those at b = 2000 s/mm2

or b = 1000 s/mm2 for PCa detection (50). Most members

of the PI-RADS steering committee recommend 3 T for pros-
tate MRI. There is no consensus among experts concerning
the potential benefits of the use of ERCs (12). The impact
of the mp-MRI protocol on CADx systems should been con-
sidered and researched in the future. The combination of T2W,
DWI, and DCE-MRI is the most commonly used set of pa-
rameters for the detection or diagnosis of PCa. MRS with
other parameters is also used in some research. The intro-
duction of new imaging modalities or new modality
combinations for mp-MRI may lead to better CADx systems.
Combining CAD prediction and PI-RADS into a combi-
nation score has the potential to improve diagnostic accuracy
(197). The MR PI-RADS system may provide a platform for
CAD system development in the future.

The diagnostic value of these parameters for discrimina-
tion between benign tissue and malignant tissue depends on
the lesion’s location. The parameter values of PCa are in the
range of those of nonmalignant diseases or conditions such
as prostatitis, fibromuscular benign prostatic hyperplasia, post-
biopsy hemorrhagic change, making for poor diagnostic value,
especially in the TZ. TZ and PZ cancer possess distinct quan-
titative imaging features on MRI. Computer-extracted
parameters may be useful for cancer detection in the PZ, but
are not suited in the TZ. In recent years, research focus has
shifted from PZ PCa to whole PCa. There are more chal-
lenges in developing a CADx system for both PZ and TZ
lesions than for PZ lesions only. Applications of anatomic seg-
mentation from MRI as an additional input to artificial neural
network improve the accuracy of detecting cancerous voxels
from MRSI (198). A CAD system, using two MRI se-
quences, such as T2-MRI and high b-value (b = 2000 s/mm2)
DWI, and texture features based on local binary patterns, is
able to detect the discriminative texture features for cancer
detection and localization, and the performance of the CADx
system was not dependent on the specific regions of the pros-
tate (52). Future direction should also include whether zonal
segmentation of the prostate is necessary when some new
imaging sequences are being used.

Ex vivo whole-mount prostate histologic analysis pro-
vides more accurate label information for training a CADx
system. However, whole-mount histology is expensive, and
registering whole-mount histologic slices with 3D mp-MRI
is a challenging problem. This is especially true during the
preparation of the prostate histologic data for training a CADx
system. Pathologists must collect a large amount of training
data from many patients, apply reliable biomarkers for each
patient, prepare blocks, scan a large number of histologic slices,
and manually define lesion boundaries on histologic slices.
However, these are laborious and time-consuming proce-
dures. Therefore, the histologic image preparation procedures
need to be performed by some automatic methods to improve
efficacy. A software system has been designed to create a pseudo
whole-mount histology section (134). A computer-aided system
to automatically grade pathologic images according to the
Gleason grading system has also been investigated (199). A
scheme, including automatic diagnosis from histologic images,
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3D histologic reconstruction, and registration, should be de-
veloped for ground truth definition in the future.

Image quantification methods, such as accurate image reg-
istration for motion correction, compartment modeling for
functional parameters estimation, feature extraction in high-
dimensional data, automatic image classification for
differentiating cancer from normal tissue, and correlation anal-
yses among radiological data and genomic information, will
play key roles in the future development of intelligent CAD
systems.

Radiomics, as a high-dimensional extraction of large amounts
of image features with high throughput from radiographic
images, can provide valuable diagnostic, prognostic, or pre-
dictive information. Cameron et al. had developed a quantitative
radiomics feature model for performance of PCa detection
using mp-MRI (115). Khalvati et al. (118) present new
texture feature models for radiomics-driven detection of
PCa using mp-MRI data. Radiomics are emerging as a
useful tool for PCa detection. Further work is needed to
build radiomics-based CAD systems for PCa diagnosis, treat-
ment planning, treatment prediction, and treatment response
evaluation.

The Gleason grade of PCa is the most widely used prog-
nostic factor for PCa. MR metrics on T2W, DWI, DCE-
MRI, and MRS imaging relate to microenvironment and
microstructure. Therefore, these MR metrics can predict the
Gleason grade of the cancer. Building a CAD system based
on mp-MRI and Gleason score is feasible. It can play a sig-
nificant role in predicting prognosis, guiding biopsy, identifying
suitable patients under active surveillance, and making a de-
cision of appropriate treatment. CAD systems for prediction
of Gleason score should be developed in the future.

As the anatomic information is important when analyzing
functional data, T2W images are frequently used in mp-
MRI CADx systems. T2W plus DWI and DCE-MRI are
commonly used as the combinations. Chan et al. con-
structed a summary statistical map of the PZ based on the utility
of multichannel statistical classifiers by combining textural and
anatomic features in PCa areas from T2W, DWI, proton density
maps, and T2 maps (122). Langer et al. included DCE-
MRI and PK parameter maps as extra features to a CADx
system for the detection of PCa at the PZ (111). They evalu-
ated their system in predefined ROIs, but on a per voxel basis.
Vos et al. implemented a two-stage CADx system for PCa
using an initial blob detection approach combined with a can-
didate segmentation and classification using statistical region
features (14). Litjens et al. recently investigated a fully auto-
mated CAD system including a novel combination of
segmentation, voxel classification, candidate extraction, and
classification (62).

Promising preliminary results have been obtained with CADx
systems that combine the analysis of statistical, structural, and
functional MRI features and the use of an adapted classifi-
cation scheme. Likelihood maps have been obtained by
combining information from mp-MRI using mathematical de-
scriptors. These studies showed that the discrimination between

benign and malignant tissues is feasible with good perfor-
mances (62,111).

CONCLUSION

We comprehensively reviewed mp-MRI–based, computer-
aided technology for PCa detection. Prostate CADx systems
are a complicated composition of preprocessing, segmenta-
tion, registration, feature extraction, and classification modules.
There are some challenges in accurate registration of MRI
and histopathology, which is important for ground truth def-
inition. Clinical applications of computer-aided systems include
localization, diagnosis, staging, aggressiveness assessment, guiding
biopsy, treatment planning, and therapeutic response assess-
ment. Although the performance of some CADx systems is
good, there is no such a system that has been wildly used in
clinic. It is likely that more improvements in quantitative image
analysis and computer-aided methods would need to be made
to meet the clinical needs in near future work.
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